Q. P. Code: 541102

(3 Hours)

[Total Marks: 80]

- N.B. (1) Question No 1 is compulsory
 - (2) Solve any three question out of remaining five questions
 - (3) Assumption made should be clearly stated
 - (4) Figure to the right indicates full marks

08

08

08

06

- 1. (a) Consider the set $A=\{1,2,3,4,5,6\}$ under the multiplication modulo 7.
 - (i) Find the multiplication table for the above
 - (ii) Find the inverse of 2,3 and 5,6
 - (iii) Prove that it is a cyclic group
 - (iv) Find the orders and the subgroups generated by {3,4} and {2,3}
 - (b) Determine the number of integers between 1 and 250 that are divisible by any of the integers 2,3,5 and 7.
 - (c) Suppose that A is non empty set ,and f is a function that has A as it's domain. Let R be the relation on A consisting of all ordered pairs (x, y) where f (x) = f (y). Show that R is an equivalence relation on A.
- 2. (a) Given $S=\{1,2,3,4\}$ and a Relation R on S given by $R = \{(4,3),(2,2),(2,1),(3,1),(1,2)\}$
 - (i) Show that R is not transitive
 - (ii) Find transitive closure of R by Warshall's algorithm
 - (b) Show that $n(n^2-1)$ is divisible by 24, where n is any odd positive integer.
 - (c) Prove that a connected graph with n vertices must have at least n-1 edges.
 Can a single undirected graph of 8 vertices have 40 edges excluding self loop.
- 3. (a) Find the ordinary generating functions for the given sequences:
 - (i) {0,1,2,3,4, } (ii) {1,2,3,4, }
 - (ii) {0,3,32,33, •••• } (iv){2,2,2,2,}
 - (b) Functions f, g, h are defined on a set, $X = \{1,2,3\}$ as [6] $f = \{(1,2),(2,3),(3,1)\}$. $g = \{(1,2),(2,1)(3,3)\}$. $h = \{(1,1),(2,2),(3,1)\}$.
 - (i) Find f o g, go f, are they equal?
 - (ii) Find fo go h and fo h o g

	(c)	For each of the following sets of weights construct an optimal binary prefix code. For each weight in the set give the corresponding code word:	06
		(i) 1,2,4,6,9,10,12 (ii) 10,11,14,16,18,21 (iii) 5,7,8,15,35,40.	
4.	(a)	Show that the (2,5) encoding function e: $B^2 \longrightarrow B^5$ defined by	08
		e(00)=00000 e(01)=01110 e(10)=10101 e(11)=11011 is a group code .How many errors will it detect?	96
	(b)	Prove the following (A-B) U (B-A) =(AU B)- (An B)	0.6
	(c)	Let T be the set of all even integers. Show that (Z,+) and (T,+) are isomorphic.	06
5.	(a)	Determine the matrix of the partial order of divisibility on the set $A = \{1,3,5,15,30\}$. Draw the Hasse diagram of the poset. Indicate whether it is a chain or not?	08
	(b)		06
	(c)	Find the solution of $a_{r+2} + 2a_{r+1} - 3a_r = 0$ that satisfies $a_0 = 1$, $a_1 = 2$	06
6.	(a)	Determine whether the following posets are Boolean algebras .Justify your answers. (i)A={1,2,3,6} with divisibility (ii) D20: divisors of 20 with divisibility	08
	(b)	Define Universal and Existential quantifiers? Explain with examples.	06
	(c)	Prove that the set $G = \{0,1,2,3,4,5\}$ is an Abelian group of order 6 with respect to addition modulo 6.	06

COMP - Rev.

COURSE: S.E (Sem - III) (CBSGS) (All Branches)

(E)

QP Code : 541102

Q3 a) Read as find the generating functions....

ii) read as $\{0,3,3^2,3^3,.....\}$

Q3 b) Ignore [6] marked as below

- (b) Functions f, g, h are defined on a set, $X = \{1,2,3\}$ as [6] 06 $f = \{(1,2),(2,3),(3,1)\}$. $g = \{(1,2),(2,1)(3,3)\}$. $h = \{(1,1),(2,2),(3,1)\}$.
 - (i) Find f o g, go f, are they equal?
 - (ii) Find fo go h and fo hog

Q4 b) Read as "Prove the following (A-B) U (B-A) = $(A \cup B)$ "

Query Update time: 22/12/2016 03:20 PM