Q.P. Code: 4836

		(3 Hours)	[Total Marks: 80
N	.B. :	 Question No. 1 is compulsory. Assume suitable data if necessary. Attempt any three questions out of the remaining five. 	
1.	(b) (c)	Convert (121.2) ₃ into base 10. Represent (52) ₁₀ into Excess - 3 code and Gray code. Find the one's complement and two's complement of (57) ₁₀ .	2 2 2
	(e) (f) (g) (h)	Realize $y = AB + AB$ using NAND gates only. Obtain hamming code for 1011. Convert $(126)_{10}$ to Octal, Hexcode. State demorgans law. Convert $(214.32)_{10}$ to binary. Perform binary subtraction using 2's complement for $(62)_{10}$ a	2 2 2 2 2 and (99) ₁₀ 4
2.		Minimize the logic function using Quine-McCluskey method. $f(A,B,C,D) = \Sigma m (1,3,7,9,10,11,13,15)$ Implement the following expression using single 4:1 Mux.	. 12
	(0)	$f = (A,B,C,D) = \Sigma m (0,1,2,4,6,9,12,14)$	8
3.	(a)	Design a 4-input (A,B,C,D) digital circuit that will give at its outponly if the binary number formed at the input is between 2 and 9	out (X) a logic 1 (including).
		Simplify $Y = \overline{(A + \overline{A} B) (C + \overline{D})}$	5
	(c)	Design 1 bit comparator using logic gates.	5
4.	(a)	Given the logic expression	
		 (i) Express in standard SOP (ii) Draw Y-map for the equation. (iii) Minimize and realize using NAND gates only. 	1.2
	(b)	(iii) Minimize and realize using NAND gates only. Design 8 bit BCD adder.	8
5.	(a) (b)	Design a mod 5 synchronous up counter using JK FF. Convert SR FF to TFF and JK FF.	10 10
6.	(e short note on (any three) (a) VHDL (b) Multivibrators (c) Gray code & Excess-3code (d) Johnson Ring Counter	20