T0923 / T1476 FLUID MECHANICS I

Q.P.Code: 27407

20

08

(3 hours)

Note:

Max. Marks: 80

Question no.1 is compulsory

Solve any 3 questions out of remaining

Assume data wherever necessary and clearly mention the assumptions made.

Draw neat figures as required.

1. Answer any 4 of the following.

- a. Explain Doublet flow.
- b. Explain Cipolletti weir or notch along with formula and neat sketch.
- c. Write Eulers equation of motion and derive Bernoulli's equation from it.

 Mention all assumptions made.
- d. Write a note on working of Bourdon Pressure Gauge with a neat sketch.
- e. Define: Density; Weight density; specific Volume; Specific Gravity and; viscosity.
- 2. a. An oil film of thickness 1.5 mm is used for lubrication between a square plate of size 0.9 m x 0.9 m and an inclined plane having an angle of inclination 20°. The weight of the square plate is 392.4 N and it slides down the plane with a uniform velocity of 0.2 m/s. Find the dynamic viscosity of oil.
 - b. Find the discharge of water flowing through a pipe 30 cm diameter placed in an inclined position where a venturimeter is inserted, having a throat diameter of 15 cm. The difference of the pressure between the main and throat is measured by a liquid of sp. gr. 0.6 in an inverted U-tube which gives a reading of 30 cm. The loss of head between the main and throat is 0.2 times the kinetic head of the pipe.
- a. An external cylindrical mouthpiece of diameter 100 mm is discharging
 water under a constant head of 8 m. Determine the discharge and absolute pressure
 head of water at vena-contracta. Take Cd = 0.855 and Cc for vena-contracta = 0.62.
 Take atmospheric pressure head = 10.3 m of water.
 - b. A circular plate of 3 m diameter is under water with its plane making an angle of 30° with the water surface. If the top edge of the plate is 1 m below the water surface, find the force on one side of the plate and its location.

Turn Over

T0923 / T1476 FLUID MECHANICS I

Q.P.Code: 27407

2

4.		An open circular cylinder of 20 cm diameter and 100 cm long contains water a height of 80 cm. It is rotated about its vertical axis. Find the speed of rotation n: no water spills and; axial depth is zero.	10	
		A weir 36 m long is divided into 12 equal bays by vertical posts, each 0.6 ide. Determine the discharge over a weir if the head over the crest is 1.20 m	10	
	and	velocity of approach is 1.2 m/s. Use francis formula.	1	
5.	a.	A rectangular pontoon 8.0 m long, 7 m broad and 3 m deep weighs 588.6	12	
	kN. It carries on its upper deck an empty boiler of 4 m diameter weighing 392.4			
	kN. The center of gravity of the boiler and pontoon are at their respective centers			
	along a vertical line. Find the metacentric height. Weight density of sea water is			
	10104 N/m ³ .			
	b.	Describe experimental determination of Hydraulic Coefficients.	08	
			(d) 10	
6.	a.	State & Derive Pascal's Law	06	
			()4	
	b.	An oil of sp. gr. 0.8 under a pressure of 137.2 kN/m ² . What is the pressure	UH	
	head expressed in meters of water? What is the pressure head expressed in meters of oil?			
	C.	If for a two dimensional potential flow, the velocity potential is given	10	
	by Ø	by $\emptyset = x(2y-1)$; determine the velocity at the point (4, 5). Determine also the		
	value of stream function at that point?			