	(Three Hours)	u Marks
N.B.:		
1.	Q.1 is compulsory	
2.	Attempt any three question out of remaining five	200-CT
3.	Assume suitable data if required	
1. Atte	empt any four from following	
a) Def	fine mass density, weight density, specific gravity, specific volume and viscosit	y. 5
b) Exp	plain stability of submerged bodies	17000 17050 18837
c) Diff	ferentiate between notches and weirs	5 5
d) Exp	plain equipotential lines and flow net	5
e) Exp	plain surface tension and capillarity	5
f) Wha	at are different types of pressure measuring devices	5
2. a) A	A vertical gap 23.5 mm wide of infinite extent contains oil of specific gravity	0.95 and
viscos	sity of 2.45 N-s/m ² . A metal plate 1.5 m x 1.5 m x 1.5 mm thickness weighing 4	19 N is to
be lifte	ed through the gap at a constant speed of 0.1 m/s. Estimate the force required	10
b) A t	tank contains water upto a height of 0.5 m above the base. An immiscible liqu	uid of sp
Gravit	ty 0.8 is filled on the top of water upto 1m height. Calculate (i) total pressure on	one side
of tanl	k (ii) the position of centre of pressure for one side of the tank which is 2m wid	e 10
0 0 1	For a two dimensional flow, the velocity potential is given by $\varphi = 4 x$ (3y-4), d locity at the point (2,3). Determine also the value of stream function ψ at the po	
b)S ho	w that for a vessel containing liquid subjected to constant rotation, the rise of liq	juid leve
at the	wall is equal to the fall of liquid level at the axis of rotation.	
4. a) A	solid cube of sides 0.5 m each is made of a material of specific gravity 0.5.	The cube
floats	in a liquid of specific gravity 0.95 with two of its faces horizontal. Estimate its	stability
		10

60782 Page 1 of 2

Paper / Subject Code: 50805 / Fluid Machanics-I

b) Derive expression for discharge through a rectangular notch also, find the discharge of	wate
flowing over a rectangular notch of 2 m length when the constant head over the not	ich i
280mm. Take Cd = 0.60	10
5. a) A pipe line carrying oil of sp.gr. 0.87, changes in diameter from 200mm diame	ter a
position A to 500mm diameter at position B which 4m at a higher level. If the pressures	at A
and B are 9.81N/cm ² to 5.9N/cm ² respectively and the discharge is 200 lit/sec. Determine	ie th
loss of head and direction of flow	10
b) Derive Bernoulli's equation of motion also states assumptions made with its	5.00
applications.	10
6. Write short note on	
a) Experimental method for determination of metacentric height	5
b) Source, Sink and Doublet	5
c) Flow past a Rankine oval body	5
d) Cipolletti weir	5

60782 Page 2 of 2