Q.P. Code :11708

[Marks:80]

		Please check whether you have got the right question paper.	
		N.B: 1. Question No.ONE is compulsory	
		2. Solve any THREE Questions out of remaining FIVE	78.4
		3. Figures to the right indicate full marks.	1
		 Write the sub – Questions of main question collectively together. 	
			9.9
Q.1	a)	Solve the PDE $\frac{\partial z}{\partial z} = 2 \frac{\partial z}{\partial z} + 2$ Given $z(x,0) = 6e^{-3x}$	05
	b)	Evalute $\int_A^B (y^2 dx + xydy)$ along $y = 2t$, $x = t^2$ where $A(1, -2)$ to $B(0,0)$	05
	c)	If $f(y) = C \cdot g \cdot (y) + C \cdot (y) + C \cdot (y)$ where $C \cdot C \cdot C$ are constants and $g \cdot g \cdot g$.	05
	c)	If $f(x) = C_1g_1(x) + C_2(x) + C_3(x)$, where C_1, C_2, C_3 are constants and g_1, g_2, g_3	03
		are orthomormal sets on (a, b) then show that $\int_A^B f(x^2) dx = c_1^2 + c_2^2 + c_3^2$	
	d)	Find the fourier transform of $f(x) = x \cdot 0 < x < 1$	05
		= 2 - x, 1 < x < 2	
		$= 0, x \ge 2$	
Q.2	a)	Obtain the fourier expansaion of	06
		$f(x) = \left(\frac{\pi - x}{2}\right)^2$ in the interval $0 < x < 2\pi$	
	b)	A tightly stretched string with fixed end points $x = 0$, & $x = L$ in the shape defined by	06
		y = Kx (L-x) where k is a constant is released from position of rest. Find y.	
	c)	Prove that $\overline{F} = (y^2 \cos + z^3)I + (2y\sin x - 4)j + (3xz^2 + 2)k$ is a conservaive field. Find (i)	08
		scaler potential for \vec{F} (ii)the work done in moving an object in this field from (0,1,-1) to	
	45°C	$(\frac{\pi}{2}, -1, 2)$.	
. d			
Q.3	a)	Obtain the complex form of fourier series for	06
	h١	$f(x) = \cosh x + \sinh x \text{ in } (-1,1).$ Obtain half range sine series for $f(x)$ when	06
		$F(x) = \begin{cases} x & 0 < x < \pi/2 \\ \pi/2 < x < \pi \end{cases}$ Hence find the sum of $\sum_{(2n-1)}^{\infty} \frac{1}{n4}$.	
3 3	6		
	c)	Verify Green's Theorem in the plane for $\int_c (xy + y^2) dx + x^2 dy$ where C is the closed	08
	97%	curve of the region bounded by $y = x \& y = x^2$.	
Q.4	a)	Find the fourier interier representation of	06
		1	
		PROTOCO ATVINCES	

[Time: 3 Hours]

Q.P. Code :11708

$$f(x) = e^{ax} x \le 0$$
$$= e^{-ax} x \ge 0$$

- b) Show that the set of functions $\sin x$, $\sin 2x$, $\sin 3x$ is orthogonal over $(0,\pi)$.
- A rod of length 30cm has its ends A and B kept at $20^{\circ}V$ & $80^{\circ}C$ respectively until osteady state condition prevail. The temperature at each end is then suddenly reduced to $0^{\circ}C$ & kept so. Find the resulting temperature function u(x,t) taking x=0 at A.
- Q.5 a) Find the fourier expansion of $f(x) = 4 x^2$, $-2 \le x \le 2$
 - b) A rectangular metal plate with insulated surfaces is of width a and so long as compared 06 to its breadth that it can be considered infinite in length without introducing an appreciable error if the temperature along short edge is y=0 given by $u(x, 0) = u \sin \frac{\pi x}{a}$ for 0 < x < a & other long edges x=0 & x=a & the short edges are kept at zero degree temperature, find the function u(x,y) describing the steady
 - c) Find Fourier series for $f(x) = f(x) = \begin{cases} 2, & -2 < x < 0 \\ x, & 0 < x < 2 \end{cases}$
- Q.6 a) Find fourier sin Transform of $f(x) = \frac{e^{-ax}}{x}$
 - b) Solve $\int_c \overline{F} \cdot d\overline{r}$ by stockes theorem for $\overline{F} = yi + zj + xk$ over the surface $x^2 + y^2 = 1 z > 0.$
 - c) Dinf the Fourier series for $f(x) = \begin{cases} -\pi, & -\pi < x < 0 \\ x, & 0 < x < \pi \end{cases}$ 08