1/12/16

6

6

Q.P. Code: 573000

(3 Hours) (29)

[Total Marks: 80

N.B.: (1) Question No. ONE is compulsory.

- (2) Solve any THREE Questions out of remaining FIVE.
- (3) Figures to the right indicate full marks.
- (4) Write the sub -questions of main question collectively together.
- 1. (a) Find fourier Integral of f(x) = 1, 0 < x < 1= 0, x < 0, x > 1
 - (b) Evaluate $\int_{c}^{\infty} \overline{f} \times d\overline{r}$ where $\overline{F} = (2xy + z^2)i + x^2j + 3xz^2k$ along the curve 5 x = t, $y = t^2$, $z = t^3$ from (0,0,0) to (1,1,1)
 - (c) Prove that $f_1(x) = 1$, $f_2(x) = x$, $f_3(x) = (3x^2-1)/2$ are orthogonal over (-1,1).
 - (d) Express the function $f(x) = \begin{cases} 1, & \text{for } |x| < 1 \\ 0, & \text{for } |x| > 1 \end{cases}$ as fourier Transform. 5

 Hence, evaluate $\int_{-\infty}^{\infty} \frac{\sin \sin x}{s} ds$
- 2. (a) Obtain the Fourier expansion of

 $f(x) = \left(\frac{\pi - x}{2}\right)^2 \text{ in the interval } 0 < x < 2\pi$

- (b) A tightly stretched string with fixed end points x = 0,& x = L in the shape defined by y = kx (L - x) where k is a constant is released from position of rest. Find y.
- (c) Prove that $\overline{F} = (y^2 \cos x + z^3)i + (2y \sin x 4)j + (3xz^2 + 2)k$ is a conservative field. Find (i) scalar potential for \overline{F} (ii) the work done in moving an object in this field from (0, 1, -1) to $(\frac{\pi}{2}, -1, 2)$.
- 3. (a) Obtain the complex form of Fourier series for $3f(x) = \cosh 3x + \sinh 3x$ in (-3, 3)
 - (b) Obtain half range sine series for f(x) when

 $f(x) = \begin{cases} x, & 0 < x < \pi/2 \\ \pi - x & \pi/2 < x < \pi \end{cases}$ Hence find the sum of $\sum_{(2n-1)}^{\infty} \frac{1}{n^4}$

(c) Verify Green's Theorem in the plane for $\int_C (xy + y^2) dx + x^2 dy$ where C is the closed curve of the region bounded by $y = x & y = x^2$

TURN OVER

chem/ IV/cBSGS/ AM-IV

- (a) Find Fourier integral representation for $f(x) = 1 x^2$ for $|x| \le 1$ for |x| > 1
 - Show that the set of functions $\sin \frac{\pi x}{r}$, $\cos \frac{\pi x}{r}$, $\sin \frac{2\pi x}{r}$, $\cos \frac{2\pi x}{r}$,..... Form an orthogonal set in (-I, I) and construct and orthonormal set.
 - A rod of length 30cms has its ends A and B kept at 20°C & 80°C (c) respectively until steady state conditions prevail. The temperature at each end is then suddenly reduced to 0°C & kept so. Find the resulting temperature function u(x,t) taking x = 0 at A.
- 5. (a) Find the Fourier expansion of f(x) = 0, -2 < x < -1= 1+x -1 < x < 0= 1-x 0 < x < 1 = 0. 1 < x < 2

6

- A rectangular metal plate with insulated surfaces is of width a and so (b) long as compared to its breadth that it can be considered infinite in length without introducing an appreciable error if the temperature along one short edge is y = 0 given by $u(x, 0 = u\sin(\pi x/a))$ for 0 < x < a &other long edges x = 0 & x = a & the short edges are kept at zerodegree temperature, find the function u(x, y) describing the steady state.
- Find the Fourier series for $f(x) = \begin{cases} 2, & -2 < x < 0 \\ x & 0 < x < 2 \end{cases}$ (c)
- 6 6. (a) Find Fourier sine Transform of $f(x) = \frac{e^{-2x}}{x}$
 - (b) Solve $\int_{c}^{\overline{F}} \cdot d\overline{r}$ by Stokes theorem for $\overline{F} = yi + zj + xk$ over the surface $x^2 + y^2 = 1 z$, z > 0. (c) Find the Fourier series for $f(x) \begin{cases} -\pi & -\pi < x < 0 \\ x, & 0 < x < \pi \end{cases}$ 6