7-May-19

1T00524 - S.E.(CHEMICAL)(Sem IV) (Choice Based) / 40301 - APPLIED MATHEMATICS - IV 38769

Q.P.Code: 38769

Time: 3 Hours Marks: 80

N.B 1. Q. No.1 is **compulsory.**

- 2. Answer any **four** out of remaining six questions.
- 3. Figures to the right indicate full marks.
- 4. Use of statistical tables is permitted.
- 5. Write the sub –questions of main question collectively together.

1. a) Using the Newton Raphason method find the root of
$$x^3 - 5x - 11 = 0$$
,

- Prove that $f_1(x) = 1$, $f_2(x) = x$, $f_3(x) = (3x^2 1)/2$ are orthogonal over (-1,1).
- c) Determine the nature of the poles & find sum of residues at each pole, $(z) = \frac{z}{az^2 + bz + c}$.

d) Find the maximum or minimum of the function,
$$z = x_1^2 + x_2^2 + x_3^2 - 6x_1 - 10x_2 - 14x_3 + 103$$
.

- 2. a) Find Fourier series for $f(x) = 2x x^2$ in (0, 3).
 - A tightly stretched string with fixed end points x = 0, & x = L in the shape defined by y = kx (L x) where k is a constant is released from position of rest find y.
 - e) Evaluate $\int_0^6 \frac{dx}{1+x^2}$ by using Simpson's $1/3^{\text{rd}}$ & $3/8^{\text{th}}$ rule. Also find the errors.

3. a) Find the Fourier Integral representation of
$$f(x) = e^{ax}$$
, $x \le 0$
= e^{-ax} , $x \ge 0$.

- b) Evaluate $\int_{-\infty}^{\infty} \frac{x^2}{(x^2+4)(x^2+9)} dx$ using contour integration.
- c) A rod of length L has its ends A & B kept at 0° C & 100° C resp. until steady state conditions prevail. If the temperature at A is raised to 25° C and that of B is reduced to 75° C & kept so, find the temperature u(x, t) at a distance x from A & at time t.

5

5

6

8

6

8

6

Paper / Subject Code: 40301 / Applied Mathematics-IV

Q.P.Code: 38769

b) Using Lagrange's multipliers, solve the NLPP.

Optimize
$$z = 12x_1 + 8x_2 + 6x_3 - x_1^2 - x_2^2 - x_3^2 - 23$$
.
Subject to $x_1 + x_2 + x_3 = 10$, $x_1, x_2, x_3 \ge 0$

6

Find the Fourier series for $f(x) = \begin{cases} 2, & -2 < x < 0 \\ x, & 0 < x < 2 \end{cases}$

- 8
- 5. a) Find all possible Laurent's series expansions of the function, $f(z) = \frac{1}{z(z+1)(z-2)}$ about z=0 6 indicating the region of convergence in each case.
 - A rectangular metal plate with insulated surfaces is of width a and so long as compared to its breadth that it can be considered infinite in length without introducing an appreciable error if the temperature along one short edge is y=0 given by $u(x,0) = u_0 \sin(\pi x/a)$ for 0 < x < a & other long edges x = 0 & x = a & the short edges are kept at zero degree temperature, find the function u(x, y) describing the steady state.
 - c) Obtain the complex form of Fourier series for $f(x) = 2x x^2$ in (0, 2).

8

6

6

- 6. a) Evaluate the integral $\int_C \frac{e^{z^2}}{(z+1)^4} dz$, where C is the |z-1| = 3 using cauchy's integral formala.
 - b) Obtain half range sine series for f(x) = x(2-x)in(0,2).
 - c) Using K-T Conditions solve

Maximize
$$Z = 12x_1 + 21x_2 + 2x_1x_2 - 2x_1^2 - 2x_2^2$$
,
Subject to $x_1 + x_2 \le 10$, $x_2 \le 8$, x_1 , $x_2 \ge 0$.

8
