[Time: Three Hours] [Marks:80] N.B.: (1) Question No 1 is compulsory (2) Attempt any three questions out of the remaining five questions (3) Non Programmable calculator is allowed Q.1) a) Find the value of the integral $\int_0^{1+i} (x-y+ix^2)dz$ along the straight line from z=0 to z=1+i. [5] b) Find the Fourier Series representing by f(x) = |x|, $-\pi < x < \pi$. [5] c) Find the Fourier transforms of f(x)=1, |x| < k; [5] d) Express $f(x)=x^4-8x^3+18x^2-10x$. Find also the function whose first difference is the given function. [5] Q.2)a) Expand $f(x) = lx - x^2$, 0 < x < l in a half range sine series [6] b) Using the method of Lagrange's multipliers solve the following NLPP Optimize $z=6x_1+8x_2-x_1^2-x_2^2$ subject to $4x_1+3x_2=16$, $3x_1+5x_2=15$, $x_1,x_2 \ge 0$ [6] c) Expand $f(x) = \frac{2}{(z-1)(z-2)}$ about z=0 indicating the region of convergence. [8] Q.3)a) If f(5)=12, f(6)=13, f(9)=14 and f(11)=16, find f(10) using Lagrange's Interpolation formula [6] b) Find the solution of the wave equation $\frac{\partial^2 y}{\partial t^2} = c^2 \frac{\partial^2 y}{\partial x^2}$ such that y=P₀cospt,(P₀ is constant) when x=L and y=0 when x=0[6] c) Use the Kuhn Tucker conditions to solve the following NLPP [8] Maximize $z=10x_1+10x_2-x_1^2-x_2^2$ subject to $x_1+x_2 \le 8$, $-x_1+x_2 \le 5, \quad x_1,x_2 \ge 0$ a) Find Half range cosine series for f(x)=x, 0< x<2[6]

Q4)

b) Evaluate the integral using Cauchy's Integral formula $\int_C \frac{e^{2z}}{(z-a)^4} dz$ where C is the circle |z|=2[6]

c) A bar with insulated sides is initially at temperature 0° C throughout. The end x=0 is kept at 0° C and the heat is suddenly applied so that $\frac{\partial u}{\partial r}$ =10 at x=L for all the time. Find the temperature function u(x,t). [8]

56939 Page 1 of 2

Q5)

a) Find f(4.4) for which f(0)=12, f(2)=7, f(4)=6, f(6)=7, f(8)=13, f(10)=32, f(12)=77 [6]

[6]

- b) Find the complex form of the Fourier series for $f(x) = e^{2x}$ in (0,2)
- c) The steady state temperature distribution in a thin plate bounded by the lines x=0,x=a,y=0 and $y=\infty$ governed by the partial differential equation $U_{xx}+U_{yy}=0$. Obtain the steady state temperature distribution under the conditions:

$$U(0,y)=U(a,y)=U(x,\infty)=0$$
 and $U(x,0)=x$, $0 \le x \le \frac{a}{2}$, [8]
= $a-x$, $\frac{a}{2} \le x \le a$.

Q6)

- a) solve $\frac{\partial z}{\partial x} 2\frac{\partial z}{\partial y} = z$ where $z(x, 0) = 3e^{-5x} + 2e^{-3x}$ using method of separation of variable
- b) Evaluate $\int_0^{2\pi} \frac{\cos 2\theta}{5 + 4\cos \theta} d\theta.$ [6]
- c) Use Newton's Divided Difference formula to find the polynomial of the lowest degree which assumes the following values: Also find f'(2) and f''(2) [8]

X	-1 2 2 3
f(x)	-21 15 12 3