5/15

(3 Hours)

S.E - IN Sem Chem.

[Total Marks: 80

I.B.: (1) Questions No. 1 is Compulsory.

- (2) Answer Any Three Question from remaining Five Questions.
- (3) Figures to the right indicate full marks.
- Answer any Four of the following:

20

- (a) Explain the concept of electrical double layer using Heimholtz and Stern Model.
- (b) Explain role of complexing agent in solvent extraction.
- (c) What is the principle of amperometric titration? Explain the curve obtained in titration of Pb (II) ions againest sulphate ions.
- (d) Write a note on glass electrode.
- (e) What are catalyst? Explain how
 - (i) a promotor increases the activity of a catalyst.
 - (ii) a catalytic posion paralyses the activity of a catalyst.
 - (iii) a catalyst remains unchanged chemically at the end of reaction.
- What is shielding and de-shielding? Explain the splitting of NMR signal.
 - (1) cH3 CH3
 - (2) The NMR spectrum of C_2H_4 Br has only one signal. What is structure of the compound?
- (g) Explain Keto-enol tautomerism of ethylacetoacetate (EAA). Give synthesis of butanone from EAA.
- 2. (a) What is the principle of uv-visible spectroscopy? Given below are three organize compounds.
 - (i) CH₂=CH₂ (ii) CH₂=CH-CH=CH₂
 - (iii) CH2=CH-CH=CH-CH=CH2 predict which one will absorb at longer wavelength and at shorter wavelength and why?
 - (b) Write a note on Enzyme Catalysis.

3

- (c) Explain determination of solubility of sparingly soluble AgCl.
- -
- (d) What is Aromaticity? Explain aromaticity of anthracene.

Q.P. Code: 3628

2

3.	(a)	The distribution ratio for lodine between CHC1, & Water is 420. If	5
		100 cm ³ of an aqueous solution containing 1.025 mg iodine is	
		equilibriated with 50cm ³ portions of CHC1 ₃ . What amount of lodine	
		will remain unextracted in water? Also calculate % extraction.	,
	(b)	What are colloids? Explain phenomenon of electro-osmosis.	5
	(c)	Explain in detail the technique of Thin-layer chromatography. How	5
		purity of aeatyl salicyclic acid is determined using same technique.	
	(d)	Write a note on 'transport number'	5
4.	(a)	Explain principle of IR spectroscopy. Explain any two applications with suitable example.	5
	(b)	What are ion-exchange resins?	
		10% of common salt is passed through a cation exchanger in H ⁺	5
		form. Calculae weight of HCl that will be formed.	
	(c)	Discuss Debye-Huckel theory of strong electrolytes.	5
	(d)	How would you prepare the following compounds from diethyl	5
2		malonate i) succinic acid ii) Berbitaric acid.	
			Ė
5.	(a)	Give the principle of Gas chromatography Mention its application.	3 E
	(b)	What are surfactants? Explain the application of surfactants in detergents.	5
	(c)	What is the principle of solvent extraction? Explain any one method in detail.	5
	(d)	Give prepartion of following compounds starting from acetoactic	5
•	(4)	ester i) Adipic acid ii) 4 - methyl uracil.	
6.	(a)	Explain principle of conductometric tiration. Mention its advantages	5
•		& limitations.	
	(b)	What are emulsions? Explain types of emulsions with suitable	5
		example.	
	(c)	Compare UV & IR specrocsopy.	5
	(d)	Write a note an 'Intermediate compound formation theory.'	5