CHEM-PC

N.B 1.Question number one is compulsory.

- 2. Attempt any three of the remaining questions.
- 3. Each question carries equal marks.
- 4. Figures to the right indicate marks.
- 5. Make suitable assumptions when required.

1	(a)	What you mean by a process. Differentiate unit process and unit operation.	05
-	(b)	20 grams of caustic soda is dissolved in water to prepare 500 ml od	05
	` ,	solution. Find normality and molarity of solution.	
	(c)	Crude oil is analysed to contain 87% carbon, 12.5% hydrogen and 0.5%	05
		sulphur (w/w). Calculate the net calorific value of the oil at 298K. Given that	
		the gross calorific value of the oil at 298K is 45071 kJ/kg oil and the latent	
		heat of vaporization of water at 298K is 2442.5 kJ/kg.	0.5
	(d)	Explain concept of the adiabatic saturation temperature.	05
2	(a)	A chemist is interested in preparing 500 ml of 1 normal, 1 molar and 1	05
		molal solution of H ₂ SO ₄ . Assuming the density of H ₂ SO ₄ solution to be	
		1.075 g/cc, Calculate the quantities of H ₂ SO ₄ to be taken to prepare these	
		solution.	0.5
	(b)	Certain chemical is found to contain 40ppm impurity. Convert this impurity	05
		in to mass%. What is the condition for the following to be true:-mg/l =ppm	10
	(c)	The strength of aqueous hydrogen peroxide solution having a density 1.075	10
	•	kg/l is specified as 60 volumes. Calculate the weight percentage of H ₂ O ₂ in	
_		solution.	10
• 3	(a)	An evaporator system concentrating a weak liquor from 5% to 50% solid	10
		handles 100kg of solids per hour. If the same system is to concentrate a weak liquor from 4% to 35%, find the capacity of the system in terms of	
esement of the		solids that can be handled per hour assuming water evaporation capacity to	
		be same in both the cases.	
	(b)	It is desired to have a mixed acid containing 40 per cent HNO ₃ , 43 percent	10
		H ₂ SO ₄ and 17 percent H ₂ O by weight. Sulphuric acid of 98 per cent by	
		weight is available. Calculate (a) Strength of nitric acid(b) Weight ratio of	
		sulphuric to nitric acid.	
4	(a)	The analysis of gas entering the converter in a sulphuric acid plant is	10
		5%SO ₂ ,12%O ₂ and rest N ₂ by volume. The gas leaving the converter	
		contains 0.5%SO ₂ on SO ₃ free basis. Give the actual analysis of the product	
	4.	gas stream.	10:
	(b)		10.
		the reaction $C_6H_6(g) + 3 H_2(g) \rightarrow C_6H_{12}(g)$. 30 per cent excess hydrogen is used above that required by equation.	٠
		Conversion is 50 per cent and yield is 90 per cent. Calculate the	
		requirement of benzene and hydrogen gas for 100 moles of cyclohexane	
		produced.	
5	(a)	Calculate the std. heat of reaction at 800 C for the complete combustion of	10
		pentane gas. The mean heat capacities of C ₅ H ₁₂ , oxygen, carbon dioxide	
		and H ₂ O are 247,33.62,52.32,38.49 j/mol.k respectively. The molar std	
		heat of combustion at 298 K is - 3271.71 kj/mol	

(b) Calculate the heat of reaction at 298K for the following reaction: $C_2H_6 \rightarrow C_2H_4 + H_2$

10

Data:

6

Component	$\Delta H_c^{\circ} kJ/mol$		
C ₂ H ₆	-1560.69		
C ₂ H ₄	-1411.2		
H ₂	-285.83		

(a) Explain purging operation.

05

(b) Ethylchloride can be prepared by the following reaction: $2C_2H_6 + cl_2 \rightarrow 2C_2H_5Cl + H_2$. Fresh ethane and chlorine gas along with recycled ethane are combined and fed in to the reactor. Test shows that if 100% excess Cl_2 is mixed with ethane a single pass conversion of 60% results & of the ethane that reacts all is converted to products & none goes as undesired product. Calculate the mole ratio of C_2H_5Cl in the product to C_2H_6 in the fresh feed and the recycle ratio.