S.E-III Sem-Chem. Computer Programming & Numerical Methods.

(F) SE/III/CBGS/CHEM/CPGNA

QP Code: 30669

(3 Hours)

[Total Marks: 80

- I.B.: 1) Question No.1 is compulsory
 - 2) Answer any three questions from remaining questions
 - 3) Assume data if necessary and specify assumptions clearly
 - a) Solve following system of equations by using Gauss-Elimination Method

$$x+y+z=7$$
 $x+2y+3z=16$ $x+3y+4z=22$

b) Use Crank-Nicholson Scheme to solve, $u_{xx} = u_t, 0 < x < 1, t > 0$, $h = \frac{1}{t}$, $k = \frac{1}{x}$

5 marks

5 marks

u(x,0) = 0, u(0,t) = 0, u(1,t) = 50t Compute u for 1-step in t-direction

c) Explain the use of 'if-else' in SciLab with appropriate example

5 marks

d) A chemical reaction is carried out in a batch of reactor and the change in concentration of

5 marks-

reactant is given by $\frac{dC_A}{dt} = \frac{C_A}{0.6 + 2C_A}$, initially at t = 0, $C_A = 1$. Find C_A at t = 1 by using

Runge Kutta Method of second order with h=0.5

(2 a) Use Bender Schmidt Method to solve, $\frac{\partial^2 u}{\partial x^2} = \frac{1}{4} \frac{\partial u}{\partial t}$ given u(0,t) = 0 = u(8,t),

10 marks

$$u(x,0) = 4x - \frac{x^2}{2}$$
 Find u in the range taking $h = 1$ upto $t = 1$

- b) Find the root of the equation $3x \sqrt{1 + \sin x} = 0$ upto four decimal places using Bisection Method 10 marks
- 2.3 a) Use Regula Falsi Method to find the root of the equation $x \log_{10} x = 2$ upto three decimal places

7 marks

b) Discuss the convergence of Newton Raphson Method

6 marks

TURN OVER

SE/III/CEXIS/CHEM/CPENA QP Code: 30669

c) Solve
$$\frac{\partial^2 p}{\partial x^2} + \frac{\partial^2 p}{\partial y^2} = 0$$
, if $p(0, y) = 0$, $p(x, 0) = 0$, $p(4, y) = y$, $p(x, 4) = x$

where $0 \le x \le 4$, $0 \le y \le 4$ by draw the mesh for given data

In a particular reaction equilibrium problem the following equations are obtained Q4

$$C_A = 40 - 20x_1 - 10x_2$$
 $C_B = 10 - 10x_2$ $C_C = 20x_1 - 30x_2$ $C_D = 15 - 5x_1$

And the equilibrium position is calculated by the equations

$$f_1 = \frac{C_C}{C_A C_D} - 6 \times 10^{-4} = 0$$

$$f_2 = \frac{C_C}{C_A^2 C_D} - 5 \times 10^{-2} = 0$$

$$f_2 = \frac{C_C}{C_A^2 C_B} - 5 \times 10^{-2} = 0$$

Use appropriate numerical method to calculate the equilibrium position

10 n

Q.5 a) Lee and Duffy relate the friction factor of flow of suspension of fibrous particles to the

Reynolds Number by the expression $\frac{1}{\sqrt{f}} = \left(\frac{1}{k}\right) \ln\left(\text{Re}\sqrt{f}\right) + \left(14 - \frac{5.6}{k}\right)$

For the suspension with 0.08% concentration, k=0.28. What is the value of f when Re=3750Use the Iterative Method to find the friction factor correct up to four decimal places

b) Solve the following system of equation by Gauss-Jordan Method and LU-Decomposition

x+y+z=3 x+4y+9z=6 x+2y+3z=4

Q.6 a) Calculate the volume of superheated steam at 100atm and 350°C using the equation $\left(P + \frac{a}{v^2}\right)(v - b) = RT$, Newton-Raphson Method, for initial value of v use Ideal gas equation

where $a = \frac{27R^2T_o^2}{6AP}$, $b = \frac{RT_c}{8P}$, Tc = 647.11Kelvin, Pc = 220.76atm

b) Solve $\frac{dy}{dx} = x^2(1+y)$, y(1) = 1, h = 0.1. Find the value of $y(1.4)_P$ and $y(1.4)_C$ by Adam Bashforth

FW-Con.11373 16.