(3 Hours)

Total Marks: 80

Notes: (1) Question no 1 is compulsory

- (2) Attempt any three out of remaining five questions.
- (3) Figures to the right indicate marks.
- (4) Assume suitable assumptions wherever required.

Q1 Answer the following:

(a) State and explain various program control loops in Scilab.

[05]

(b) Draw tree diagram describing different types of methods used for solving
algebraic and transcendental equations.

[05]

(c) Explain derivation of formula for Regula-Falsi method.

(d) Use secant method to estimate the root of the equation: (upto 2 iterations) [05]

$$x^2 - 4x - 10 = 0$$

Q2 (a) Solve the following system by Gaussian Elimination method.

[10]

$$\begin{bmatrix} 9 & 3 & 4 \\ 4 & 3 & 4 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 7 \\ 8 \\ 3 \end{bmatrix}$$

(b) Solve the following system of linear equations using Gauss Siedel method. [10]

$$4x_1+x_2-x_3 = 3$$

$$2x_1+7x_2+x_3 = 19$$

$$x_1-3x_2+12x_3 = 31$$

Q3 (a) Determine the roots of following simultaneous equations using Newton-Rephaser [10]

method. (Perform at least 2 iterations)

$$x^{2} + xy = 6$$

 $x^{2} - y^{2} = 3$ (x₀ = 1 and y₀ = 1)

(b) Given $\frac{dy}{dx} = x^2 + 2y$, y(0) = 1 calculate y(1.5) using step size 0.5 by Euler's method. [10]

Q4 A ball at 1200 K is allowed to cool down in air at an ambient temperature of 300K. [20]

Assuming heat loss is due to radiation, the differential equation of the temperature

of the ball is given by $dT/dt = -2.2067 \times 10^{-12} (T^4 - 81 \times 10^8)$, where T is in K and t is in sec.

4. 658 -1:701

Find the temperature of ball at t = 480 sec, using Runge Kutta method.

Assume step size of 160 seconds.

Q5 (a). Find the solution of following by Adam's PC method.

[10]

 $y' = y^2 \sin t$, given that y(0) = 1, y(0.05) = 1.00125, y(0.1) = 1.00502, y(0.15) = 1.01136, calculate y(0.2)

(b) Use Runge - Kutta 4th order method for following differential equations:

[10]

Given dy/dx = (y+x)/(y-x), y(0) = 1 calculate y(0.2) using step size 0.2.

Q6 (a) Find the root of the equation $x^4 - x - 10 = 0$, using Bisection method correct to 2 decimal places.

(b) Find the real root of e^xsinx = 1 using linear interpolation method.

[10]

[10]