Paper / Subject Code: 50704 / Chemical Engineering Thermodyanamics-1

22-Nov-2019 1T00523 - S.E.(Chemical Engineering)(SEM-III)(Choice Base) / 50704 - Chemical Engineering Thermodyanamics-I 77404

Time: 3 Hours Total Marks: 80

N.B.:

- (i) Question No.1. is compulsory.
- (ii) Attempt any three questions out of remaining five questions.
- (iii) Assume suitable data and justify the same.
- (iv) Figures to the right indicate full marks
- Q 1 Explain any Four.

20

- (a) Define Fugacity coefficient. What is its physical significance?
- (b) Concept of Entropy with example.
- (c) Explain the Procedure to prepare Enthalpy Temperature diagram.
- (d) Reversible and irreversible process with example.
- (e) Calculate the coefficient of performance of carnot refrigerator operating between -20 °C and 30 °C.
- Q 2 (a) An ideal gas is undergoing a series of three operations: The gas is heated at constant volume from 12 300 K and 1 bar to apressure of 2 bar. It is expanded in a reversible adiabatic process to a pressure of 1 bar. It is cooled at constant pressure of 1 bar to 300 K. Determine the heat and work effects for each step. Assume Cp = 29.3 kJ/kmol K
 - (b) Explain Clausius Inequality with equation.

08

- Q 3 (a) A 40 kg steel casting (Cp = 0.5 kJ/kg K) at a temperature of 450 °C is quenched in 150 kg of oil (Cp = 10 to 2.5 kJ/kg K) at 25 °C. If there are no heat losses, what is the change in entropy of a) the casting b) the oil c) both considered together?
 - (b) Viral coefficient for ethane is $B = -15.67 \times 10^{-2} \text{ m}3/\text{kmol}$ and $C = 9.65 \times 10^{-3} \text{ m}^6/\text{kmol}^2$. Calculate the 1 isothermal work of compression for one kmol of a gas from 1 bar to 15 bar at 100° C. Compressibility factor $Z_1 = 0.9949$ and $Z_2 = 0.9203$. Viral equation of state is:

$$\frac{PV}{RT} = Z = 1 + \frac{B}{V} + \frac{C}{V2}$$

Q4 (a) Estimate the fugacity coefficient of n-hexane at 600 K and 800 Kpa using van der Waals equation 10 of state

Data: $T_c = 507.4 \text{ K}$, $P_c = 2969 \text{ kPa}$

77404

(b) Find the volume of n.pentane at 500 K and 20 bar for a gas which obeys Redlich Kwong Soave 10 equation of state.

Redlich Kwong Soave equation of state is given by:

$$P = \frac{RT}{(V-b)} - \frac{a\alpha}{V(V+b)}$$

Where:

$$a = 0.42748 \frac{R^2 T_c^2}{P_c}$$
 and $b = 0.08664 \frac{RT_c}{P_c}$

$$\alpha = [1 + S(1 - \sqrt{T_r})]^2$$

$$S = 0.48508 + 1.55171 \text{ w} - 0.15613 \text{ w}^2$$

$$Tc = 469.9 \text{ K}, Pc = 33.7 \text{ bar}, \omega = 0.251$$

- Q5 (a) Explain the concept of exergy and get the expression to calculate exergy loss when the system 10 changes its state.
 - (b) A reversible heat engine operates between source temperature of 900 K and the sink temperature of 10 315 K. The engine is coupled with the heat pump working between the temperature of source at 253 K and the sink of 315 K. The net work done during the process is 320 KJ and the energy supplied by the higher temperature source at 900 K is 2000 KJ. Find the work done by both the engines and the energy supplied to other sources and the sink.
- Q 6 (a) Derive an expression for Joule Thomson Coefficient for van der Waals gas and find the relation 10 for inversion temperature and inversion pressure.
 - (b) Derive an equation for entropy departure of a gas obeying Redlich Kwong equation of state. 10

$$P = \frac{RT}{v-b} - \frac{a}{\sqrt{T}v(v+b)}$$
