120,0

Unit operation -II

SE/W/CBG8/BT/UO-71 Q.P. Code: 568700

(3 Hours)

Max. Marks: 80

-	534	
	•	12000
		•
		•

1. Question No. 1 is compulsory.

i) Film theory ii) Penetration theory

b) Describe in brief various methods for measuring KLa.

- 2. Attempt any three questions from remaining five questions.
- 3. Assume suitable data wherever necessary.

	o. Assume suitable data wherever necessary.	
Q.	a) Mention important requirements of insulating materials and describe optimum insulation thickness.	5
4	b) Explain in brief the process of diffusion in bioprocess.	55
	c) Calculate the rate of heat transfer by radiation from an unlarged steam nine 50 mm	5
	O.D. at 393 K to air at 293 K. (Assume e=0.9)	
	d) What are the significances of Nusselt Number & Prandtl Number in convective heat transfer transfer?	5
Q.2	a) Derive the expression for heat transfer through furnace wall made up of three different materials in series.	10
	c) Explain in detail forward and backward multiple effect evaporators	10
Q.3	a) A mixture of benzene and toluene containing 40 % benzene and 60 % toluene is to be separated in a fractionating column to give a product (distillate) containing 96 %	15
	befizene and a bottom product containing 95 % toluene. The feed is a mixture of two	
	third vapour and one third liquid. Find the number of theoretical stages required if	
	reflux ratio of 1.5 times the minimum is used and if relative volatility is 2.5. b) Write a note on bubble cap tray tower.	5
0.4		5
	parts.	5
	b) Compare drop wise condensation and film wise condensation.	5
	c) Derive the equation of relative volatility for binary system to generate vapor - liquid	10
Q.5	equilibrium data. Explain vapour liquid equilibrium curve for Benzene Toluene system.	21 21 6
Marine .	a) A steam pipe 115 mm outside diameter is covered with two layers of different	10
	materials. The first layer is 50 mm thick and has a thermal conductivity of 0.062 W/(m.K). The second layer is 30 mm thick and has a thermal conductivity of 0.872	
Marie Control	W/(m.K). outside surface temperature of the steam pipe is 508 K and that of the outer	
Marie .	surface of the lagging is 311 K. calculate the heat loss per meter length of the pipe and	
Marini I	the temperature between the two layers of insulation	
	b) Hot oil at a rate of 1.2 kg/s [Cp = 2083 J/(kg.K)] flows through a double pipe heat exchanger. It enters at 633 K and leaves at 573 K, the cold fluid enters at 303 K and	10
	leaves at 400 K. if the overall heat transfer coefficient is 500 W/(m ² .K), calculate the	
	heat transfer area for i) parallel flow and ii) countercurrent flow.	*
Q.6	a) Write short note on the following theories of diffusion mass transfer	10
-		