5

10

(3

HOURS)	(MAX. MARKS : 80
,	

٦	ъ т	•		4		
П	N	•	M	•	n	•
П	•				Г.	_

- 1. Question **No. 1** is compulsory.
- 2. Attempt **any three** questions out of remaining **five** questions.
- 3. Assume suitable data wherever necessary.
- 4. Figures to right indicate full marks.
- Q.1 Answer the following (**Any four**)
 - Discuss convection with suitable example. 5 a.
 - What is the selection criteria for insulating material if it is used to be in 5 b. electrical operations?
 - 5 Discuss Stefan- Boltzmann law in detail. c.
 - 5 d. Explain Two film theory in detail.
 - Discuss the role of diffusion in dairy industry. e.
- Differentiate between feed forward and feed back multiple effect evaporators. Q.2 10 a.
 - b. Alcohol vapor diffusing through a layer of water vapor under equimolar counter diffusion at 35°C and 1 atm pressure. The modal concentrations of alcohol on the two sides of the gas film (water vapor) 0.3 mm thick are 80% and 10 % respectively. Assuming the diffusivity of alcohol-water vapor to be 0.18 cm²/s, Calculate the rate of diffusion of alcohol and water vapor in kg/hr through an area of 100 cm². Molecular weight of alcohol is 46. If the water vapor layer is stagnant, estimate the rate of diffusion of alcohol vapor.
- Q.3A furnace is constructed with a 230 mm thick layer of fire brick, 115 mm thick 10 layer of insulating brick and followed by a 230 mm thick layer of building brick. The inside temperature of the furnace is 1213 K and the outside temperature is 318 K. The thermal conductivities of fire brick, insulating brick and building brick are 6.047, 0.581 and 2.33 W/m.K. Find the heat loss per unit area and the temperature at the interface.
 - 10 Derive the expression for heat flow through composite cylinder.

Q.4	a.	Evaluate the inside heat transfer coefficient of heavy oil flows at a rate of	10			
		0.5kg/s through a tube of 19mm inside diameter, length of tube is 1.5m and is				
		heated from 311K to 327 K by condensing stream at 373 K.				
	Data: Properties of oil at 319K					
		$k_{oil} = 0.14$ w/m.k, $Cp_{oil} = 2.1$ kJ/ kg.K, Viscosity of oil = 154 (mN.s)/m ² , viscosity of water = 87 (mN.s)/m ²				
	b.	What is the purpose of using radiation field? Prove that insertion of one	10			
		radiation shield between two parallel plane surfaces, the radiation heat transfer	200			
		rate reduces to half of the initial rate.	590			
Q.5	a.	Derive the equation for LMTD. Explain LMTD correction factor.	10			
	b.	Give the classification of heat exchangers.	10			
Q.6		Write a short note				
	a.	Knudsen diffusion	5			
	b.	Application of heat exchanger	5			
	c.	Multiple effect evaporator	5			
	d.	Antifoaming agents	5			