BT/III/CBGS/VO-I QP Code: 4949

(MAX. MARKS: 80)

(3 HOURS)

Note:

- 1. Question No. 1 is compulsory.
- 2. Attempt any three questions out of remaining five questions.
- 3. Assume suitable data wherever necessary.
- 4. Figures to right indicate full marks.
- Answer the following (Any four)
 - a. Derive the equation of continuity.
 - b. Explain belt conveyor.
 - c. Discuss various types of fluids.
 - d. Define the following
 - i) Viscosity

- ii) Boundary layer thickness
- iii) Fanning friction factor
- iv) Screen effectiveness
- e. Explain constant rate filtration.
- Q.2 a. Derive the Bernoulli's equation for adiabatic process.

10

20

b. Derive the equation for pressure head for the fluid at rest.

- Q.3 a. A differential manometer is connected at two points A and B as shown in figure.

10

Pipe A contains a liquid of specific gravity 1.5 while pipe B contains a liquid of specific gravity 0.9. The pressures at A and B are 9.8 x 10⁴ N/m² and 17.658 x 10⁴ N/m² respectively. Find the difference in mercury level in the differential manometer.

Water is flowing through a pipe AB one meter in diameter at 3 m/s and then passes through a pipe BC 1.2 m diameter. At C, pipe branches. Branch CD is 0.8m in diameter and carries one third of flow in AB. The flow velocity in branch in the flow in AB. Find;

10

b.

BT/III/CBGS/

QP Code: 4949

- i) Volume rate of flow in AB
- ii) Velocity in BC
- iii) Velocity in CD
- iv) Diameter of CE.
- Q.4a. What are the types of pumps? Explain centrifugal pump.
 - b. Explain Kynch theory of sedimentation.
- Q.5a. Explain orifice meter. Derive the equation for discharge through orifice meter.
 - b. Explain major and minor losses in pipes.
- Q.6 Write a short note. (Any four)
 - a. Types of impellers
 - b. Pitot tube
 - c. Hammer mill
 - d. Boundary layer formation
 - e. Venturimeter