- N.B. (1) Question No. 1 is compulsory.
 - (2) Attempt any three questions out of the remaining five questions.
 - (3) Non-programmable calculator is allowed.
- 1. (a) Find Laplace transform of e^{-4t} sinht sint.
 - (b) Find the eigen values and eigen vectors corresponding to the following matrix:

$$\begin{bmatrix} 2 & 1 & 1 \\ 2 & 3 & 2 \\ 3 & 3 & 4 \end{bmatrix}$$

- (c) Evaluate $\int \overline{z} dz$ from z = 0 to z = 4 + 2i along the curve $z = t^2 + it$.
- (d) Show that the map of the real axis z plane is a circle under the transformation 5
 - $w = \frac{2}{z+i}$. Find its centre and radius.

Evaluate
$$\int_{0}^{\infty} e^{-t} \int_{0}^{t} \frac{\sin u}{u} du dt.$$

(b) Find the orthogonal matrix that will diagonalise the matrix.

$$A = \begin{bmatrix} 7 & 0 & -2 \\ 0 & 5 & -2 \\ -2 & -2 & 6 \end{bmatrix}$$

- (c) If $v = e^x$ siny, prove that the v is harmonic function. Also find the corresponding 7 harmonic conjugate function and analytic function.
- 3. (a) Find inverse Laplace transform of $\tan^{-1}\left(\frac{2}{s^2}\right)$.
 - (b) Show that the matrix $A = \begin{bmatrix} 8 & -8 & -2 \\ 4 & -3 & -2 \\ 3 & -4 & 1 \end{bmatrix}$ is diagonalisable. Find the transforming 7

matrix and the diagonal matrix.

(c) Find the bilinear transformation which map the points 1, -i, 2 on z plane onto 0, 7, -i respectively of w plane.

TURN OVER

4. (a) Evaluate $\int_{0}^{\infty} \frac{d\theta}{(2+\cos\theta)^2}$.

- (b) Find the inverse Laplace transform by convolution theorem of
 - The ratio of the probability of 3 successes in 5 independent trials to the probability of 2 successes in 5 independent trails is 1/4. What is the probability of 4 successes in 6 independent trails?
- Calculate the correlation coefficient from the following data: X: 23, 27, 28, 29, 30, 31, 33, 35, 36, 39 Y: 18, 22, 23, 24, 25, 26, 28, 29, 30, 32
 - (b) Evaluate $\int_{C} \frac{\sin^6 z}{|z-(\pi/z)|^3} dz$ where c is circle |z|=2.
 - (c) Find the sum of the residues at singular points of f(z) $(z-1)^2\left(z^2-1\right)$
- (a) Find the Laplace transform of e^{-t} cost. H(t -π).
 - (b) Using the method of Lagrangian multipliers solve the following non-linear programming problem :-

Maximize
$$Z = 6x_1 + 8x_2 - x_1^2 - x_2^2$$

Subject to $4x_1 + 3x_2 = 16$

$$3x_1 + 5x_2 = 15 \quad x_1, x_2 \ge 0$$

Using the Kuhn-Tucker conditions, Solve the following:-

N.L.P.P Maximize $Z = 2x_1 + x_2 - x_1^2$

Subject to
$$2x_1 + 3x_2 \le 6$$

$$2x_1 + x_2 \le 4$$
 $x_1, x_2 \ge 0$.