216115

34b. Signal and systems.

6/15

Bm/10/cBGS/8S

Q.P. Code: 3582

(3 Hours)

[Total Marks: 80

- N.B.: (1) Question No. 1 is compulsory.
 - (2) Attempt any three questions of the remaining questions.
 - (3) Assume suitable data.
- 1 (a) Determine whether the signal is periodic, calculate its fundamental period. 20 $x(t) = -5 + 3\sin 5t + \cos 3.8t + \cos 7.5t$
 - (b) Check whether given signal is energy or power x(n) = n u(n)
 - (c) Classify the following system in terms of it's linearity, time invariance causality, memory.

$$y(n) = 2x(n+1) + 5$$

(d) Check orthogonality of the signals over one period

$$x_1(n) = e^{jk\left(\frac{x}{2}\right)n}$$
; $x_2(n) = e^{jm\left(\frac{x}{2}\right)n}$

2. (a) Find the convolution and sketch the response

10

$$x(t) = e^{-tt} u(t-1)$$
; $h(t) = e^{-tt} u(t+3)$; both a, b > 0.

(b) Find the initial and final value of

10

$$X(S) = \frac{2S}{S^2 + 3S + 2}$$

3. (a) Prove the periodicity property and the time shifting property of the Laplace transform.

10

(b) Find the Z transform of the following.

 $X(z) = \frac{Z^2}{(Z-0.5)(Z-1)^2} |Z| > 1$

4 (a) Given the Signal $x(n) = u(n+1) - u(n-3) + \delta(n)$

10

Sketch the following:

- (i) x (n)
- (ii) x (n-3)
- (iii) x(2n+2)
- (iv) x[-(n/2)+2]
- (v) 2x(n)

TURN OVER

13m/10/08ms/s

10

10

10

10

10

Q.P. Code: 3582

2

(b) Find the even and odd part of the signal

$$x(t) = t + \frac{t}{2}; -\frac{1}{2} \le t \le \frac{1}{2}$$

$$= \frac{3}{2} - t; \frac{1}{2} \le t \le \frac{3}{2}$$

5 (a) Using the properties find the Laplace transform of the following:

(i)
$$x1(t) = e^{-tt} u(t) *u(t-5)$$

(ii)
$$x2(t) = x(t) \cos 7t$$
 where, $X(s) = \frac{(s+2)}{(s^2+4s+5)}$

(b) Find the exponential Fourier Series for the rectangular pulse train and sketch the spectrum.

6. (a) Find the DTFT for the following signal and plot the magnitude and phase spectrum.

$$x1(n) = 0.2\{u(n) - u(n-12)\}$$

(b) Compute Fourier transform for the following signal and also plot the magnitude and phase spectrum.

$$x(t) = (te^{-st}\sin 8t)u(t)$$