Q.P. Code: 3588

(3 Hours)

[Total Marks: 80

N.B.: (1) Question No. 1 is compulsory.

- (2) Attempt any three from the remaining five.
- (3) Figures to the right indicate full marks.
- (4) Draw suitable diagram whenever necessary.
- 1. a) Differentiate between closed loop and open loop control system.

20

- b) State mason's gain formula.
- c) Define sensitivity and resolution of digital voltmeter.
- d) Explain focus and intensity control in CRO.
- 2. a) Draw and explain peak and average responding voltmeter.

10

- b) Draw and explain block diagram of dual stope DVM. Also state its advantages 10 over single slope DVM.
- 3. a) Find out transfer function using mason's gain formula.

5

b) Derive transfer function for the following block diagram.

5

I TURN OVER

BMAT/CBGS/EICS

Q.P. Code: 3588

2

3. c) Explain translent response specifications of second order system.

10

4. a) Draw and explain block diagram of C.R.O.

10

b) Check the stability of the system whose characteristic equation is $2s^6 + 4s^5 + s^4 - 32s^3 + 51s$

5

c) Explain factors involved in selection of voltmeter

,

5. a) Sketch the root locus for G (s) H (s) = $\frac{K}{s(s+2)(s+4)}$

10

b) What are Lissajous patterns? Explain frequency and phase measurement using it. 10

6. a) Sketch the bode plat for the transfer function.

10

$$G(s) = \frac{1000}{(1+0.1s)(1+0.001s)}$$

Determine phase margin, Gain margin and stability of system.

b) Draw and explain block diagram and working of function generator.

10