S.E. (Sem IIII) CBSGS (BioMed)

Ash5-D:\Data-44

Con. 7885-13.

5

GX-12071

Total Marks: 80

N.B.:(1) Question no. 1 is compulsory.

- Attempt any three questions out of the remaining five questions.
- Figures to right indicate Full marks.
- Prove that real and imaginary parts of an analytic function F(z) = u + iv are (a) MI ENGINEERIA
 - Find fourier series for $f(x) = |\sin x|$ in $(-\Pi, \Pi)$? (b)
 - (c) Find the Laplace transform of $\int ue^{-3u} \sin 4u du$
- (d) If $\vec{F} = xye^{2z} \vec{i} + xy^2 \cos z \vec{j} + x^2 \cos xy \hat{k}$, find div \vec{F} and curl \vec{F} .
- Using Laplace transform, solve :- $(\theta^2 + 3\theta + 2)y = e^{-2t} \sin t$ where y(0) = 0, y'(0) = 0.
 - Find the directional derivative of $d = x^2 y \cos z$ at $(1, 2, \frac{\Pi}{2})$ in the direction of 6 (b) $\bar{a} = 2\hat{i} + 3\hat{j} + 2\hat{k}$
 - Find the fouries series expansion for $F(x) = \sqrt{1 \cos x}$ in $(0, 2\Pi)$, Hence deduce 8^{-2} (c)that $\frac{1}{2} = \sum \frac{1}{4^{n^2} - 1}$.
- Prove the $J_{\frac{3}{2}}(x) = \sqrt{\frac{2}{\Pi x}} \left\{ \frac{\sin x}{x} \cos x \right\}$. 6
 - Evaluate by green's theorem, $\int_{C} (x^2ydx + y^3dy)$ Where C is the closed path formed 6 (b) by $y = x, y = x^{2}$.
 - $\cos bt \cos at$ (c) Find Laplace transform of (i)

Ash5-D:\Data-45

Con. 7885-GX-12071-13.

- (ii) Find Laplace transform of: $-\frac{d}{dt}\begin{bmatrix} sint \\ t \end{bmatrix}$
- 4. (a) Show that the set of functions $\{\sin x, \sin 3x, \dots\}$ OR $\{\sin (2n+1)x : n = 0, 1, 2, \dots\}$ is orthogonal over $[0, \frac{\Pi}{2}]$, Hence construct orthonormal set of functions.
 - (b) Find the imaginary part whose real part is $u = x^3 3xy^2 + 3x^2 3y^2 + 1$
 - (c) Find inverse Laplace transform of:-
 - (i) $\log \left(\frac{s^2+4}{s^2+9}\right)$
 - (ii) $\frac{s}{(s^2+4)(s^2+9)}$
- 5. (a) Obtain half range sine series for $f(x) = x^2$ in 0 < x < 3.
 - (b) A vector field \overline{F} is given by $\overline{F} = (x^2 yz)\hat{i} + (y^2 zx)\hat{j} + (z^2 xy)\hat{k}$ is irrotational and Hence find scalar point function ϕ such that $\overline{F} = \nabla \phi$
 - (c) Show that the function $V = e^{x}$ (xsiny + ycosy) satisfies Laplace equation and find its corresponding analytic function and its harmonic conjugate.
- By using stoke's theorem, evaluate $\oint_C [(x^2 + y^2)\hat{i} + (x^2 y^2)\hat{j}] d\vec{r}$ where 'C' is the boundary of the region enclosed by circles $x^2 + y^2 = 4$, $x^2 + y^2 = 16$.
 - Show that under the transformation $w = \frac{s-4z}{4z-2}$ the circle |z| = 1 in the z-plane is transformed into a circle of unity in the w-plane.
 - (c) Prove that $\int J_3(x) dx = \frac{-2J_1(x)}{x} J_2(x)$.