

THERMODYNAMICS

[Total Marks: 80]

N. B. :

(1) Ouestion No. 1 is compulsory

- (2) Solve any three questions from remaining five questions
- (3) Assumé suitable data
- (4) Use of Mollier Chart and Steam Table is permitted

Q1) Answer any Five of the following:

[20]

- a) State the first law of thermodynamics for the Closed system undergoing a cycle.
- b) Explain Zeroth Law of Thermodynamics.
- c) Show that entropy is property of system.
- d) Define Availability and Unavailability.
- e) Define COP for refrigerator and heat pump. Derive relation between them.
- f) Define (i) Dryness Fraction
- (ii) Sensible heat of water
- (iii) Latent heat of vapourisation
- (iv) Superheated Steam
- Q2) a) State the Kelvin Planck and Clausius statement and establish the equivalence of both for Second law of Thermodynamics.

[80]

- b) One kg of dry saturated steam undergoes an isentropic expansion process from 10 bar to 1 bar. Determine the final condition of steam and the work done when the expansion takes place.
 - (i) In a cylinder fitted with a piston
 - (ii) In a turbine

[12]

[80]

- Q3) a) State and derive Steady flow energy equation and apply it to a boiler, condenser, nozzle and turbine.

b) Liquid Octane	C_8H_{18}	at 25"C	is used as fuel. Air used is 150% of theoretical air and	1 18
supplied at 25 chamber at 160	C. Assur	me à comp late heat tra	olete combustion and the product leaves the combustion ransfer per kg mole of fuel. Use the following data	[12]

Substance	k_f^c (MJ/Kmole)	h _{298K} (MJ/Kmole)	h _{1600K} (MJ/Kmole)
C_8H_{18}	-250	•	-
02	-	8.68	52.96
N ₂	-	-8.67	50.57
H_2O (gas)	-241.8	9.9	62.75
CO ₂	-393.5	9.36	76.95

Q4) a) Derive an expression for efficiency of Diesel cycle. [08] b) A mass of air initially at 206°C is at a pressure of 7bar and has a volume of 0.03m³ The a polytropic process with n = 1.5 is then air is expanded at constant pressure to 0.09m³. carried out, followed by a constant temperature process which completes the cycle. All the processes are reversible. Sketch the cycle on pressure-volume diagram and find the heat received and heat rejected in the cycle. Take R = 0.287 KJ/KgK, $C_{\star} = 0.713 \text{ KJ/KgK}$ [12] Q5) a) Explain Maxwell relations. [04] b) Explain Clausius - Clapyeron Equation [04] c) An engine working on the Otto Cycle is supplied with air at 0.1MPa and 35°C. The compression ratio is 8. Heat supplied is 2100 KJ/Kg. Calculate the maximum pressure and temperature of the cycle, the cycle efficiency and mean effective pressure. [12] Q6) a) Explain (i) Combustion (ii) Enthalpy of Formation (iii) Enthalpy of Combustion (iv) Adiabatic flame temperature [80] b) A reversible engine receives heat from two thermal reservoir maintained at constant temperatures of 750K and 500K. The engine develops 100KW and rejects 3600KJ/min of heat to a heat sink at 250K. Determine the heat supplied by each thermal reservoir and thermal efficiency of the engine. [12]