ME/Sem I/CBCGS/MRCH THERMAL/ND-18/5-12-2018

Paper / Subject Code: 61003 / Numerical Methods and Computational Techniques.

Total Marks:80

(3hours)

N.B.: 1. Answer any four questions.

- 2. Figures to the right indicate full marks.
- 3. Use of scientific calculator is permitted.
- 4. Assume suitable data if necessary with justification.
- 1. a) Find the real root of the equation $\cos x xe^x = 0$ by Bisection method correct up to four decimal places.
 - b) Use Relaxation method to solve the following system,

$$-5x + 12z = 80;$$
 $4x - y - z = -2;$ $6x + 8y - 2z = 45.$

If necessary, make sure to rearrange the equations to achieve convergence.

2. a) Determine the linear spline valid in the interval (x, x,) for the following data,

x	6.2 6.5 7.1 8.5
y(x) = x ln(x)	11.3122 12.1667 13.9167 18.1905

Also find
$$y(6.3)$$
, $y(7.0)$ and $y(7.6)$.

10

10

b) Using R-K method of 4th order, solve the differential eq.

$$\frac{d^2y}{dx^2} = x\left(\frac{dy}{dx}\right)^2 - y^2, \quad y(0) = 1, \quad y'(0) = 0$$
 for $x = 0.2$ with step size $h = 0.2$.

3. a) Using Shooting method, solve the boundary value problem,

$$\frac{d^2y}{dx^2} = 2y^2, \quad y(0) = 1, \qquad y(1) = 2$$
 with the step size $h = 0.5$

b) The velocity v of a particle at distance S from a point on its path is given by the table below:

S in metre 0 10	20	30	40	50	60	70	80
v(m/sec) 40 55	60	65	70	63	58	45	35

Estimate the time taken to travel 80 meters. Justify for the method used.

[TURN OVER]

10

10

10

10

4. a) The population of a town is as follows:

Year (x)	1941	1951	1961	1971	1981	1991	2001
Population (y) in lakhs	5	7	10	15	21	28	40

Estimate the population increase during the period 1946 to 2000.

b) The latent heat of vaporization of steam l, is given in the following table at different temperatures t:

t	40	50	60	70	80	90	100 110	
l	1069	1063	1058	1052	1049	1041	1036 1030	

For this range temperature, a relation of the form l = a + bt is known to fit the data, Find the values of a and b by the method of least square.

5. a) Using predictor-corrector method, find y(0.2) and y(0.4)

$$\frac{dy}{dx} = 2y + e^x, y(0) = 0$$

b) Using Bendre-Schmidt method, solve the equation $u_t = 4u_{xx}$

under the conditions
$$u(0,t), u(8,t) = 0, u(x,0) = 8x - x^2, 0 \le x \le 8$$

up to $t = 1min$, taking $h = 1$.

6. a) Using finite-difference scheme, solve the boundary value problem,

$$\frac{d^2y}{dx^2} = 2x + 3y$$

with the boundary conditions y(0) = y(1) = 0 and step size h = 0.25.

b) Classify the equation $u_{xx} + u_{yy} = x^3 + y^3$. Write the finite difference scheme, corresponding algebraic equations and solve it over the rectangular region

$$0 < x < 3, 0 < y < 2$$
. Given that,

$$u(x,0) = u(x,2) = 0, u(0,y) = u(3,y) = 0$$
 taking $h = k = 1$.