QP CODE: 26111

(3 hours)

Total Marks:80

N.B.: 1. Answer any four questions.

- 2. Figures to the right indicate full marks.
- 3. Use of scientific calculator is permitted.
- 4. Assume suitable data if necessary with justification.
- 1. a) Find the real root of the equation $x \log_{10} x = 1.2$ by Bisection method correct up to four decimal places.
 - b) Use the Gauss-Seidel method to solve the following system,

$$-5x + 12z = 80;$$
 $4x - y - z = -2;$ $6x + 8y - 2z = 45.$

If necessary, make sure to rearrange the equations to achieve convergence.

2. a) Determine the linear spline valid in the interval $[x_{i-1}, x_i]$ for the following data,

x	6.2	6.5	7.1	8.5
y(x) = x ln(x)	11.3122	12.1667	13.9167	18.1905

Also find y(6.1), y(6.6) and y(7.5).

10

b) Using R-K 4th order method, solve the differential equations

$$\frac{dy}{dx} = 1 + xz, \qquad \frac{dz}{dx} = -xy$$

for x = 0.3 with step size h = 0.3. 4(0) = 0, 2(0) = 1.

Sakue 11/2/17 am. 10

3. a) Using Shooting method, solve the boundary value problem,

$$\frac{d^2y}{dx^2} = y$$
, $y(0) = 0$ and $y(1) = 1.17$ with the step size $h = 0.5$.

b) The velocity v of a car which starts from rest, is given by the table below: 10

t (min)	2	4	6	8	10	12	14	16	18	20
v(km/min)	10	18	25	29	32	20	11	5	2	0

Estimate the distance covered in 20 minutes. Justify for the method used.

[TURN OVER]

10

10

10

4. a) Given the values:

x	5	7	11	13	17
y = f(x)	150	392	1452	2366	5202

Evaluate f(9), using Newton's divided difference formula.

b) The latent heat of vaporization of steam l, is given in the following table at different temperatures t:

	t	40 **	50	60	70	80	90	100	110
	l	1069.1	1063.6	1058.2	1052.7	1049.3	1041.8	1036.3	1030.8

For this range temperature, a relation of the form l = a + bt is known to fit the data. Find the values of a and b by the method of least square.

5. a) Using predictor-corrector method, find y(0.2) and y(0.4)

$$\frac{dy}{dx} = y + e^x, y(0) = 0$$

b) Using Schmidt method, solve the equation $u_t = u_{xx}$ under the conditions

$$u(0,t), u(1,t) = 0, \ u(x,0) = \sin \pi x, \ 0 \le x \le 1$$

up to
$$t = 0.1$$
 (Take $h = 0.2, \alpha = 0.5$)

6. a) Using finite-difference scheme, solve the boundary value problem,

$$\frac{d^2y}{dx^2} = x + y$$

with the boundary conditions y(0) = y(1) = 0 and step size h = 0.25.

b) Classify the equation $u_{xx} + u_{yy} = xy$. Write the finite difference scheme and corresponding algebraic equations to solve it. Given that 0 < x < 1, 0 < y < 1,

$$u(0,y) = 0$$
, $u(x,0) = 0$, $u(1,y) = 200$, $u(x,1) = 200$ and $h = \frac{1}{3}$.