Q.P. Code: 859400

Total Marks:80

(3hours)

N.B.: 1. Answer and four questions.

- 2. Figures to the right indicate full marks.
- 3. Use of scientific calculator is permitted.
- 4. Assume suitable data if necessary with justification.
- 1(a) Derive Newton-Raphson method and using it find the real root of the equation $x \sin x + \cos x = 0$ correct up to 3 decimal place.
- (b) Using predictor-corrector method, solve the differential equation,

$$dy/dx = x + y$$
, with $y(1) = 0$. Find $y(1.1)$, $y(1.2)$

- 2 (a) Use bisection method to determine the root of $xe^x = 2$.
 - (b) Fit a linear spline to the following data,

X	1	3	6	8
f(x)	0.0	5.5	7	9.5

Estimate the values at x = 2, 4, 7.

3 (a) Solve
$$\frac{d^2y}{dx^2} = y$$
 with $y(0) = 0$, $y((1) = 3$ by using Shooting method with step size $h = 0.5$

(b) A rocket is launched from the ground. It's acceleration a is registered during the first 80 seconds and is given in the table below:

t (sec)						50	60		80
$a (m/s^2)$	30	31.63	33.34	35.47	37.75	40.33	43.25	46.69	50.67

Find the velocity at time t = 80sec. Justify the method used.

4 (a) Use Relaxation method to solve the following system,

$$9x - y + 2z = 9$$
$$x + 10y - 2z = 15$$
$$2x - 2y - 13z = -17$$

(b) Determine the constants a and b by the method of least square such that the equation $pv^a = b$ fits the following data.

$p \left(\text{kg/m}^3 \right)$	105	42.7	25.3	16.7	13
v(litres)	2	4	6	8	10

5 (a) Using R-K method of order four, find y(0.1) and z(0.1) from the system of equations,

$$\frac{dy}{dx} = x + z, \quad \frac{dz}{dx} = x - y^2 \quad \text{given } y(0) = 2, \quad z(0) = 1$$

(b) Using Schmidt method solve the equation $u_t = u_{xx}$ under the conditions u(0,t) = 0, u(1,t) = 0, $u(x,0) = \sin \pi x$, $0 \le x \le 1$,

up to
$$t = 0.1$$
 (Take $h = 0.2$, $\alpha = 0.5$)

- 6 (a) Using finite-difference scheme, solve the boundary value problem, $\frac{d^2y}{dx^2} + y + 2 = 0 \text{ with } y(0) = 0, \qquad y((2) = 0 \text{ and step size } h = 0.5.$
 - (b) Classify the equation $u_{tt} = 16u_{xx}$ and solve it up to t = 1.25 using finite difference. Given that u(0,t) = 0, u(5,t) = 0, $u_t(x,0) = 0$, $u(x,0) = x^2(5-x)$ (take h = 1).