Paper / Subject Code: 54801 / Data Structures

26-Nov-18 1T00132 - M.C.A. (Sem. II)(CBSGS) / 54801 - Data Structure. 59169

(3 Hours) Total Marks: 80

	N.B.	(1) Question No. 1 is compulsory.(2) Attempt any four from the remaining six questions.										
		(3) Figures to	•				_	~~				
Q.1	(a)	Explain Doubly linked list. Write an algorithm to I. Create a doubly linked list II. Delete a particular node										[10]
	(b)	Given the set of symbols and corresponding frequency table as below,										
		explain the steps to create Huffman code										3,57,00
		Symbol		3	C	D	E	F	G	H	Post	C. Co.
		Frequency	8 7	7	5	78	6	2	11	8	9	
				£.	00 01 V		9,50	20 P				
Q.2	(a)	Explain Heap and operations on heap? Write an algorithm for [ReHeapdown.										[08]
	(b)	Define binary search tree. Write an algorithm to insert() & search() an element in binary search tree.										[07]
Q.3	(a)	What is analysis of algorithms? Explain the notations Big O, omega and theta used for analysis of an algorithm										[08]
	(b)											
Q.4	(a)	Write the recursive pre-order, in-order and post order traversal algorithms for a binary search tree.										[80]
	(b)											[07]
Q.5	(a)	What is graph? Explain Graph Storage structures. Perform depth first traversal on any graph.										[08]
	(b)	What is AVL tree. Write an algorithm to rotateleft() and rotateright(). [0]										

59169 Page **1** of **2**

Q.6 (a) Give the Prim's algorithm for minimum spanning tree. Write the steps [08] to find minimum spanning tree of the following graph using prim's algorithm.

- (b) What is hashing? Using digit extraction method (1st, 3rd and 5th) for hashing and linear probe method for collision resolution; store the keys given below in an array of 19 elements.

 224562, 137456, 214562, 140145, 214576, 162145, 144467, 199645, 234534
- Q.7 Write short Notes on: (Any three) [15]
 - a) Priority Queues
 - b) General trees
 - c) linked list
 - d) B-trees

59169 Page **2** of **2**