Paper / Subject Code: 54905 / Decision making & Mathematical Modelling

31/05/2019 10:30 am - 01:30 pm 1T00142 - M.C.A. (Sem. II)(Choice Based) / 54905 - Decision Making & Mathematical Modelling 58367

(3 Hours) Total Marks: - 80

N.B.

- 1. Question no.1 is compulsory.
- 2. Attempt any three questions from the remaining five questions.
- 3. Figures to the right indicate full marks
- 1 (a) Let Set $A = \{2,3,4,5,6,30,60\}$ and the partial order relation R is the divides relation (10) on set A. i.e. a|b aRb iff (a divides b)
 - Draw the digraph of R
 - Draw the Hasse diagram for the poset(A,R)
 - Find the minimal elements, maximal elements, least & greatest element, if it exists
 - (b) Prove that [p->(q->r)] -> [(p->q) -> (p->r)] is a tautology (5)
 - (c) Explain Time Changing Environment in Decision Making (5)
- 2 (a) There are three alternatives A₁, A₂, A₃ and there are four criteria C₁, C₂, C₃, C₄. (10) The comparison matric for pair wise criteria is given below

	C_1	$\hat{\mathbf{C}}_2$	\mathbb{C}_3	C_4
A_1	35 15	12 2 2	20	10
A_2		19	3 14	35
A ₃		2000	333	11

The weights for criteria C₁, C₂, C₃, C₄ are 0.2, 0.15, 0.4, 0.25, respectively. Find the best alternative using Weighted Product Model (WPM).

(10)

(10)

- 2 (b) Use Mathematical Induction to prove the property P(n)
 - P(n): $n < 2^n \forall n \in N$
 - P(n): 3n + 2 is an odd number then n is odd, where n is a natural number
- 3 (a) Find the weights for each criteria using Entropy/Shannon Theory

	\mathbb{C}_1	C ₃	C ₄
Ai Ai	25 20	15	30
A_2	10 3 3 3 30	20	30
A_3	30 0 10	30	10

(b) A pair of dice are rolled. If a sum of 7 is obtained then the person wins, else the person loses. If costs Rs 1 to play the game. If the person wins he gets his 1 rupee back and gets an additional 5 rupees. Otherwise, the person loses 1 rupee. If the bet is placed 100 times, how much is the person expected to lose or win?

58367

- 4 (a) Obtain a recurrence relation for Tower of Hanoi problem. There are n rings resting on peg A. The rings are to be transferred to peg B. No ring of a larger size is allowed to be kept on a ring of smaller size. How many moves are required? Peg C is available for temporary storage.
- 4 (b) Are the following statements valid? (10)
 - If I try hard and I have talent then I will become a musician.
 - If I become a musician then I will be happy.

 Therefore, I will not be happy then either I did not try hard or I do not have talent.
- 5 (a) Find the homogenous solution of the recurrence relation $a_n = 6a_{n-1} 11a_{n-2} + 6a_{n-3}$ with boundary conditions $a_0 = 2$, $a_1 = 5$, $a_2 = 15$
 - (b) Find the adjacency list, adjacency matrix, Euler path and Euler circuit for the following graph (10)

- 6 (a) Find the particular solution of the following recurrence relation: (10) $a_n + 5a_{n-1} + 6a_{n-2} = 42 \times 4^n$
 - (b) Determine if the relation R on set A is reflective, irreflective, symmetric, asymmetric, antisymmetric and transitive. A= set of real numbers and aRb iff |a b|=2
