5-Dec-18

1T00141 - M.C.A. (Sem. I)(Choice Based) / 56004 - Statistics & Probability.

(3 Hours)

Total Marks: 80

59332

N.B (1) Question No.1 is compulsory.

- (2) Attempt any three questions out of remaining five questions.
- (3) Assume necessary data but justify the same
- (4) Figures to the right in parenthesis indicate full marks
- (5) Use of scientific calculator is allowed

1. (a) Find the median of the following distribution:

(5)

Wages(in Rs)	2000-	3000-	4000-	5000-	6000-
×	3000	4000	5000	6000	7000
Number of workers	3	5	20	10	5.5

(b) Find quartile deviation for the following data:

(5)

Marks	Number of students
0-10	77776
10-20	887 5050
20-30	8 6 6 6
30-40	
40-50	
50-60	66666
60-70	3 3 3 3

- (c) 10 balls are distributed at random among 4 boxes. What is the probability that the first box will contain 4 balls?
- (d) In 4 tosses of a coin, let X denote number of heads. Find the expectation of X and variance of X. (5)
- 2. (a) The joint distribution function of a two dimensional random variable(x,y) is given as:

(10)

(5)

$$F(x,y) = 1 - e^{-x} - e^{-y} + e^{-(x+y)};$$
 $x > 0, y > 0$
= 0 ; elsewhere

- Find the marginal density functions of x and y
- Are x and y independent?
- $P(X \le 1 \cap Y \le 1)$

(b) Draw an ogive for the following data

(5)

(5)

Class Intervals	0-10	10-20	20-30	30-40	40-50	50-60	60-70
Frequency	30	15	27	45	36	31	17

(c) Find the equation of line of regression y on x, line of regression x on y and estimate the probable value of y when x=8

X	3	4	5	6	4	5	6	7
Y	3	5	3	2	3	4	6	6

59332 Page 1 of 3

Paper / Subject Code: 56004 / Statistics and Probability

3.	(a)	Obtain the rank correlation coefficient for the following:	(10)							
		X 68 64 75 50 64 80 75 40 55 64	A 30							
		Y 62 58 68 45 81 60 68 48 50 70	(3) 9 ⁷ 7.							
	(b)	Prove with an example that 3 events might be pairwise independent but	(5)							
	(-)	need not be mutually independent								
	(c)	Prove $E(aX + b) = aE(X) + b$ where X denotes a continuous random	(5)							
	(-)	variable								
4	()		6							
4.	(a)	State and prove Baye's Theorem. The probabilities of X, Y and Z	(10)							
		becoming managers are 4/9, 2/9 and 1/3 respectively. The probabilities	10 17 E							
		that the bonus schemes will be introduced if X, Y and Z becomes	b of the							
		managers are 3/10, 1/2 and 4/5 respectively.	10,00							
		What is the probability that the bonus scheme will be introduced?	5							
		introduced?								
		If the bonus scheme has been introduced, what is the probability								
	(h)	that the manager appointed was X?	(E)							
	(b)	Find if A and B are independent, positively associated or negatively associated:	(5)							
		N=1000, (A)=470, (B)=620 and (AB)=320								
	(c)	The following figures shows the distribution of digits in numbers chosen	(5)							
	(0)	at random from a telephone directory:	(3)							
		Digits 0 1 2 3 4								
		Frequency 1026 1107 997 966 1075								
		Digits 5 6 7 8 9								
		Frequency 933 1107 972 964 853								
		Test if the digits may be taken to occur frequently in the directory.								
		Tabulated Chi Square value is 16.919								
_	(-) of		(10)							
5.	(a)	Calculate Bowley's coefficient of skewness for the following frequency	(10)							
	20 00 00 00 00 00 00 00 00 00 00 00 00 0	distribution 10 10 20 20 20 40 40 50								
		Marks 0-10 10-20 20-30 30-40 40-50								
	7 (d-) 6	Students 5 7 20 12 6	(5)							
200	(b)	Find the mode for the following distribution	(5)							
W. 35	9, 20 W	Wages 70- 80- 90- 100- 110- 120- 130-								
		80 90 100 110 120 130 140								
200		Frequency 85 109 126 134 115 83 68	(E)							
450	(c)	25 books are placed at random in a shelf. Find the probability that a	(5)							
8997	1000	particular pair of books shall be always together								
	2270									
6.	(a)	A group of 100 items has a mean 60 and variance 25. If the mean of 50 of	(5)							
	# 6° 6° 5°	these items is 61 and standard deviation is 4.5, find the mean and								
3000										
	(b)									
6 4 4		f(x) = 6x(1-x) , $0 < x < 1$								
1,000		Check if f(x) is a probability density function	e							
0773	(c)	A mechanist is making engine parts with axle diameters of 0.700 inch. A	(5)							
P. W. C.	7566	random sample of 10 parts shows a mean diameter of 0.742 inch with a								
10 00 0 X	0.715	67 07 97								

59332 Page **2** of **3**

standard deviation of 0.040 inch. Test if the work is meeting the specifications. Tabulated value of t is 2.262

(d) In a series of houses actually invaded by smallpox, 70% of the inhabitants are attacked and 85% have been vaccinated. What is the lowest percentage of the vaccinated that must have been attacked?

59332 Page 3 of 3