Q.P. Code:00904

[Time: $2\frac{1}{2}$ Hours]

[Marks:75]

Please check whether you have got the right question paper.

N.B:

- 1. All questions are compulsory.
- 2. Make <u>suitable assumptions</u> wherever necessary and <u>state the assumptions</u> made.
- 3. Answer to the **same question** must be **written together**.
- 4. Numbers to the right indicate marks.
- 5. Draw neat labelled diagram wherever necessary.
- 6. Use of Non-programmable calculators is allowed.

Q.1 Attempt <u>any three</u> of the following:

(15)

- a. Define digital signal. With expect to digital signal explain the terms digits and bits. Also discuss active high and active low signal.
- b. What are different numbering system used? Convert following numbers to required numbering system.
 - (i) $(11001011.01110)_2 = (?)_{10}$
 - (ii) $(1100110.011010)_2 = (?)_{16}$
- c. What are codes? Where are they used? Differentiate between weighted and non-weighted codes. Give one example of each.
- d. Explain how negative numbers are represented in binary numbering system. Discuss properties of 2's complement.
- e. Perform following arithmetic operations after converting the numbers to binary numbering system -
 - (i) $(10)_{10} \div (4)_{10}$
 - (ii) $(727)_8 (234)_8$
 - (iii) (DADA)₁₆ + (BABA)₁₆
- f. Add following BCD numbers
 - (i) (56)₁₀ and (23)₁₀
 - (ii) (82)₁₀ and (34)₁₀
- Q.2 Attempt any three of the following:

(15)

- a. Draw logic circuit and make truth table to prove the following Boolean theorems
 - i) A.0 = 0
 - (ii) (A . B) . C = A. (B. C)
- b. Using rules of Boolean algebra, solve y = (x + z) (x' + y + z). Draw a logic circuit using suitable gates to implement the simplified equation.
- c. What is meant by universal logic gate? Draw logic circuits showing construction of Ex-OR gate using NAND gate and using NOR gate
- d. $F(A,B,C,D) = \sum m (0,1,2,5,13,15)$. Draw k-map and find minimized Boolean expression

[TURN OVER]

Q.P. Code:00904

e. What is meant by don't care conditions? Explain how are they used in simplifying an expression using a k-map. Use the following example-

$$F(A,B,C,D) = \sum m (1,4,8,12,1315) + d(3,14)$$

f. What are disadvantages of k-map? Explain the Q- M method. Discuss the terms 'prime impeccant', 'code word' and 'reduction table'.

Q.3 Attempt any three of the following:

(15)

- a. A 4 bit binary number is represented by $A_3A_2A_1A_0$ where $A_3A_2A_1$ and A_0 represent the individual bits with A_0 equals to the bits with A_0 equal to the LSB. Design a logic circuit that will produce a HIGH output whenever binary number is greater than $(0010)_2$ and less than $(1000)_2$.
- b. Convert 4 bit binary to 4 bit gray. Draw the truth table, necessary k-maps and logic circuit.
- c. Design a BCD TO 7 segment decoder. Realize the circuit using NAND gates only.
- d. Implement 8 bit adder 4 bit full adder.
- e. Draw circuit and explain working of BCD sub tractor.
- f. Write a note on fast multiplier.

Q.4 Attempt <u>any three</u> of the following:

(15)

- a. Implement following function using 8:1 Mux $F(A,B,C,D) = \sum M(2,4,5,7,10,14)$
- b. What are data distributor (demultiplexer)? Explain basic operation of 2 output demultiplexer.
- c. Draw block dig and explain operation of 74180 monolithic 8 bit checker/ generator.
- d. Explain the need of preset and clear pins in RS flip flop? With neat block dig and truth table explain the working of RS flip flop.
- e. Write a note on master slave JK flip flop.
- f. Discuss various applications of flip flops.

Q.5 Attempt any three of the following:

(15)

- a. Explain the working of Asynchrous / ripple counter.
- b. Design mod 4 regular sequential syschronous up counter using TFF.
- c. Write truth table for mod 6 counter in IC 7492.
- d. Explain the difference between serial shifting and parallel shifting of data in shift register.
- Explain how sequence generator circuit works. Explain with one example.
- f. Write a note on ring counter.