[Time: $2^1/_2$ Hours]

[Marks:75]

Please check whether you have got the right question paper.

N.B:

- 1. All questions are compulsory.
- 2. Figures to the right indicate marks.

Q.1 Answer following questions.

15 05

- 1) Let f be defined on an interval, and let x_1 and x_2 be points on the interval, then f is said to be decreasing if
 - p) $f(x_1) > f(x_2)$ whenever $x_1 < x_2$
 - q) $f(x_1) > f(x_2)$ whenever $x_1 > x_2$
 - r) $f(x_1) = f(x_2)$ whenever $x_1 < x_2$
 - s) None of these
- 2) If a function f is concave up on (a,b) then which of the following is true on (a,b)
 - p) f > 0
 - q) f < 0
 - r) f' = 0
 - s) None of these
- 3) If f is integrable on [a, b] and $f(x) \ge 0 \forall x \in [a,b]$, then

p)
$$\int_{a}^{b} f(x) > 0$$

$$q) \int_{a}^{b} f(x) \ge 0$$

$$r) \int_{a}^{b} f(x) = 0$$

- s) None of these
- 4) A rule that assigns a unique real number f (x,y) to each point (x,y) in some set D in the xy-plane is called
 - p) a function of one variable
 - q) a function of two variable
 - r) a function of three variables
 - s) None of these
- 5) which of the following is true about the function $f(x,y)=3x^2y^5$?
 - p) Discontinuous at (0,0)
 - q) Discontinuous at (1,1)
 - r) Continuous everywhere
 - s) None of these
- b) Fill in the blanks for the following questions:

05

- 1) A function f has a relative maximum at x_0 if there is an open interval containing x_0 on which f (x) is --- $f(x_0)$ for every x in the interval.
- 2) The points on the curve y=f(x) where the rate of change of y with respect to x changes from increasing to decreasing, or vice versa is known as-----
- 3) The integral $\int_0^{\pi} \sqrt{(1+\cos x)^2} dx$ is the arc length of y=----- from x=0 to x= π . 4) If f (x,y) = $\frac{x-y}{x+y+1}$, the value of f (y+1,y) is given by -----
- 5) The value of $\lim_{(x,y)\to(0,1)} e^{xy^2} = \dots$

(Turn Over)

- c) State true or false for the following questions:
 - 1) If f (x)=0 has a root, then Newtons Method starting at $x=x_1$ will approximate the root nearest x_1 .
 - 2) The order of the differential equation $\left(\frac{dy}{dx}\right)^2 = \frac{dy}{dx}$ is one.
 - 3) If $f(x,y) \rightarrow L$ as (x,y) approaches (0,0) along the x-axis ,and if $f(x,y) \rightarrow L$ as (x,y) approaches (0,0) along the y-axis then $\lim_{(x,y)\rightarrow (0,0)} f(x,y) = L$.
 - 4) If a function f is continuous at every point in an open set D, then f is continuous on D.
 - 5) A function f of two variables is said to have a relative maximum at a point (x_0, y_0) if there is a disk centered at (x_0, y_0) such that $f(x_0, y_0) \le f(x, y)$ for all points (x, y) that lie inside the disk.
- Q.2 Answer any THREE of the following questions:
 - a) Find the intervals on which $f(x) = x^2 3x + 8$ is increasing and the intervals on which it is decreasing.

15

15

15

- b) Use first and second derivative tests to show that $f(x) = 3x^2 6x + 1$ has a relative minimum at x = 1.
- c) Sketch the graph of the equation $y=x^3-3x+2$ and identify the locations of the intercepts (draw the graph on the answer sheet itself).
- d) Find the absolute maximum and minimum values of $f(x) = (x-2)^2$ in [1,4].
- e) A garden is to be laid out in a rectangular area and protected by a chicken wire fence. What is the largest possible area of the garden if only 100 running feet of chicken wire is available for the fence?
- f) The equation $x^3 2x 2 = 0$ has one real solution. Approximate it by Newtons Method.
- Q.3 Answer any THREE of the following questions:
 - a) Find the area under the curve $y = x^3$ over the interval [2,3].
 - b) Find the area of the region bounded above by y = x+6, bounded below by $y = x^2$ and bounded on the sides by the lines x = 0 and x = 2.
 - c) Find the approximate value of $\int_{1}^{2} \frac{1}{2} dx$ using Simpson's rule with n=10.
 - d) Solve differential equation $\frac{dy}{dx} = \frac{y}{x}$.
 - e) Use Euler's Method with a step size of 0.25 to find approximate solution of the initial-value problem $\frac{dy}{dx} = x y^2$, y(x) = 1 over $0 \le x \le 1$.
 - f) Solve the differential equation $\frac{dy}{dx} + 3y = e^{-2x}$ by the method of integrating factors.
- Q.4 Answer any THEREE of the following questions:
 - a) If $f(x,y) = \frac{xy}{x^2 + y^2}$ find the limit of f(x,y) as $(x,y) \rightarrow (0,0)$ 1) along x-axis and 2) along the line y=x.
 - b) Evaluate $\lim_{(x,y)\to(0,0)} \sqrt{x^2+y^2}$. $\log(x^2+y^2)$, by converting to polar coordinates.
 - c) Find $f_x(x,y)$ and $f_x(x,y)$ for $f(x,y)=2x^3y^2+2y+4x$, and use those partial derivatives to compute $f_x(1,3)$ and $f_y(1,3)$.
 - d) Find the directional derivative of $f(x,y)=e^{xy}$ at (2,0) in the direction of unit vector that makes an angle of $\frac{\pi}{2}$ with the positive x-axis.
 - e) Find an equation of the tangent plane to the surface $x^2 + 4y^2 + z^2 = 18$ at the point (1.,2,1). Also find the parametric equation of the line that is normal to the surface at the point (1,2,1).
 - f) Find all relative extrema and saddle points of $f(x,y)=3x^2-2xy+y^2-8y$.

(Turn Over)

15

Answer any THREE of the following questions: Q.5

- a) Find the absolute maximum and minimum values of f (x) = x-2/(x+2) on [-1,5].
 b) Show that for any constants A and B, the function y= Ae^{2x} + Be^{-4x} satisfies the equation y"+2y-8y=0.
 c) Find the area of the region under the curve y=x²+1 and over the interval [0,3].

- d) Solve differential equation $\frac{dy}{dx} + 2xy = x$.
- e) Determine whether the following limit exists. If so, find its value. $\lim_{(x,y)\to(0,0)} \frac{x^4-16y^4}{x^2+4y^2}$