F.Y.B.Sc. Comp. Sci. Sem I Nov. 17 Discrete Mathematics

Q. P. Code: 12212

		(Time: 2½ Hours)	[Total Marks: 75]
N.I	3. 1) All o	luestions are compulsory.	
2) Figures to the right indicate marks.			
	3) Illustrations, in-depth answers and diagrams will be appreciated.		
	4) Mixi	ng of sub-questions is not allowed.	will be appreciated.
Q. 1	Answer	the following questions	(15M)
	(a) Cho	oose the best choice for the following que	estions: (5M)
	(i)	A function f from R to R which satisfie	es $f(a) = f(b)$ implies $a = b$ for avery a
		and b in R is said to be	(a) I(b) implies a-b for every a
		(a) One-to-one function	(b) onto function
		(c) Either one-to-one or onto function	
	(ii)	A relation R on a set X is such that who	(d) None of these
		A relation R on a set X is such that whe is called	hever $(x, y) \in R$, $(y, x) \in R$, then R
		(a) Reflexive	
		(c) Transitive	(b) Symmetric
	(iii)		(d) None of these
	(111)	What is the coefficient of x^2y^2 in the exp (a) 4 (b) 6	A DOMESTIC OF THE PROPERTY OF
	(iv)	(a) 4 (b) 6 Suppose a bookcase shelf has 5 Physics texts, and 4 Mathematics texts. Number text of each type is given by	(c) 8 (d) None of these texts, 3 Chemistry texts, 6 Biology of ways a student can choose one
		(a) 660 (b) 560 (c) 460	(d) None of these
	(v)	An undirected graph with no multiple ed	ges or loops is called
	L	(a) Simple graph (b) Complex graph	(c) Tree (d) Pseudo graph.
	(b) Fill i	n the blanks for the following questions:	
	(i)	A function f such that $f(x) = x$ for any x function	(5M) in the domain of f is said to be a
	(ii)	A relation R on a set A is called	if whenever (o b) = D
1		$(b, a) \in \mathbb{R}$ for all $a, b \in A$	_ if whenever (a, b) ∈ R, then
A - 2	(iii)	The Gödel number of a word $w = a_5 a_2 a_3 a_4$	nasis 2532537112
	(IV)	The number of different license plates contains a sequence of three uppercase digits is given by	that can be a second
	(v)	Let G be a directed graph and v be a v ending at v is called Successor	vertex of G. The number of edges
1 1	1 . W. C.		2.0

Q. P. Code: 12212

Answer the following questions:

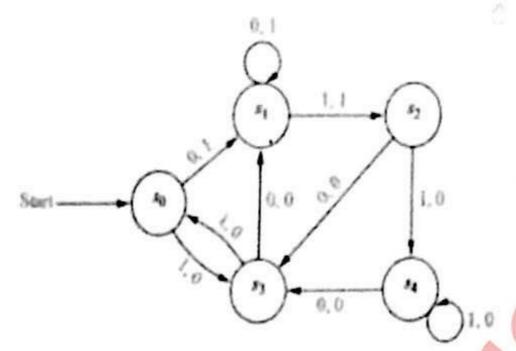
(5M)

- If the domain of the function f(x) = x+1 is R, what will be its co-domain? (i)
- Let S be a set. Determine whether there is a greatest element and a least (ii) element in the poset $(P(S), \subseteq)$.
- How many ways are there to select a first-prize winner, a second-prize (iii) winner, and a third-prize winner from 100 different people who have entered a contest?
- Define a regular grammar. (iv)
- What is the degree of a vertex of n undirected graph? (v)

Answer any three of the following: Q. 2

(15M)

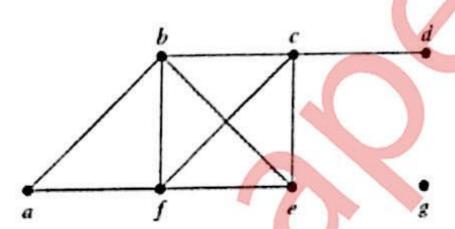
- Determine whether the function f: R-> R given by f(x) = -3x + 4 is a bijection.
- Find the domain and range of following functions:
 - The function that assigns to each positive integer the number of the digits (i) 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 that do not appear as decimal digits of the integer. (ii)
 - function that assigns to a bit string The the positionofthefirstlinthestringandthatassignsthe value 0 to a bit string consisting of all 0s
- Draw the Hasse diagram representing the partial ordering {(a,b) / a divides b} on (c)
- (d) Which of these relations on {0, 1, 2, 3} are partial orderings?.
 - $\{(0,0),(2,2),(3,3)\}$ (i)
 - $\{(0,0),(1,1),(2,0),(2,2),(2,3),(3,3)\}$ (ii)
- (e) Find a recurrence relation and give initial conditions for the number of bit strings of length n that do not have two consecutive 0.
- Find the solution of the recurrence relation $a_n = a_{n-1} + 2a_n 2$ with $a_0 = 2$ and $a_1 = 7$.


Answer any three of the following: Q. 3

(15M)

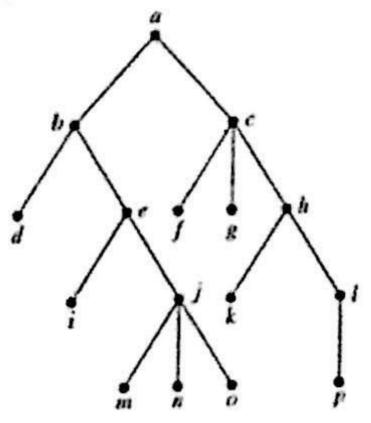
- (a) How many permutations of the letters ABCDEFG contain:
 - (i) The string BCD?
 - (ii) The string CFGA?
 - (iii) The strings BA and GF?
 - (iv) The strings ABC and DE?
 - (v) The strings ABC and CDE?
- State and prove Pascal identity.
- State Pigeonhole principle. A chess player has 77 days to prepare for an important tournament. He decides to practice by playing at least one game per day and a total of 132 games. Show that there is a succession of days during which he must have
- Suppose that there are nine students in a discrete mathematics class at a small
 - (i) Show that the class must have at least five male students or at least five female
 - (ii) Show that the class must have at least three male students or at least seven

- (c) Construct a derivation tree for the following derivation:


 the hungry rabbit eats quickly.
- (f) Find the output string generated by the finite-state machine given below if the input string is 101011.

Q. 4 Answer any three of the following:

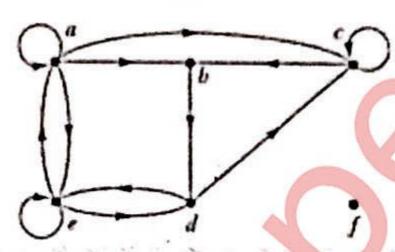
(15M)


(a) Find the degree and neighborhood of each of the vertex of the graph given below:

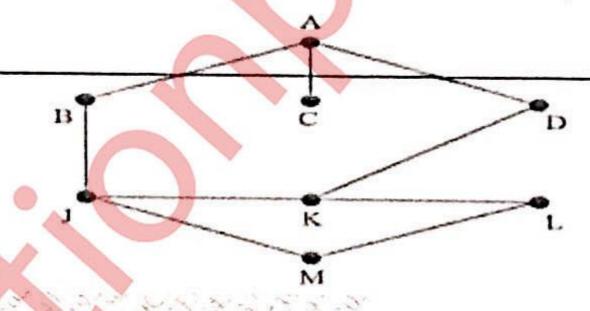
- (b) Suppose a graph G contains two distinct paths from a vertex u to a vertex v. Show that G has a cycle.
- (c) Draw the graph corresponding to the following adjacency matrix:

$$\begin{bmatrix} 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 & 0 \end{bmatrix}$$

- (d) Represent the following expressions using binary tree: (i) (x + xy) + (x/y); (ii) x + ((xy + x)/y).
- (e) Draw all possible non similar binary trees T with four external nodes.
- (f) Determine the order in which a preorder traversal visits the vertices of the following ordered rooted tree:



Page 3 of 4


Q. 5 Answer any three of the following:

(15M)

- (a) Let R be the relation on the set of all people who have visited a particular Web page such that xRy if and only if person x and person y have followed the same set of links starting at a particular Web page. Show that R is an equivalence relation.
- (b) Find the solution of the recurrence relation $a_n = 6a_{n-1} 9a_n 2$ with initial conditions $a_0 = 1$ and $a_1 = 6$.
- (c) What is the coefficient of $a^{13}b^{123}$ in the expansion $(a+b)^{25}$ using binomial theorem.
- (d) Défine a language L over an alphabet A. Let A= {a, b, c}. Find L* where language L= {b2}.
- (e) Find the in-degree and out-degree of each vertex in the graph shown:

Consider the graph G in the following figure (where the vertices are ordered alphabetically). (i) Find the adjacency structure of G. (ii) Find the order in which the vertices of G are processed using a Breadth-first search algorithm beginning at vertex A.

