N.B. (1) All questions are compulsory.

(2) Figures to the right indicate marks.

Q.P. Code: 781301

(2½ Hours)

[Total Marks: 75]

1.	Ans	wer t	he following questions (15 M)
	(a)	Cho	ose the best choice for the following questions: (5 M)
		(i)	If f_1 and f_2 are two functions from R to R such that $f_1(x) = x^2$ and $f_2(x) = x - x^2$, then $(f_1+f_2)(x)$ is given by (a) x (b) x^2 (c) - x (d) None of these
		(ii)	
		(II)	Let $\{an\}$ be a sequence that satisfies the recurrence relation $a_n = a_{n-1} + 3$ for $n = 1, 2, 3,,$ and suppose that $a_0 = 2$. What are a_1 and a_2 ? (a) 5 and 8 respectively (b) 8 and 5 respectively
			(c) 3 and 5 respectively (d) None of these
		an	
		(iii)	A class contains 10 students with 6 men and 4 women. Number of ways to elect a president, vice president, and treasurer is: (a) 132 (b) 122 (c) 120 (d) 121
	9	(iv)	There are four bus lines between A and B , and three bus lines between B and C . Number of ways that a man can travel by bus from A to C by way of B is
		(v)	(a) 10 (b) 11 (c) 12 (d) 13 An undirected graph with no multiple edges or loops is called
		(-)	(a) tree (b) complex graph (c) simple graph (d) pseudo graph.
	(b)	Tevil i	in the blanks for the following questions: (5M)
	(0)	(i)	In the blanks for the following questions: (5M) A function f such that $f(x) = x$ for any x in the domain of f is said to be a
		(1)	function.
		(ii)	A relation R on a set A is called if whenever (a, b) ∈ R and
			$(b, c) \in \mathbb{R}$, then $(a, c) \in \mathbb{R}$, for all $a, b, c \in A$.
		(iii)	The Gödel number of a word $w = a_5 a_2 a_3 a_1 a_2$ is
		(iv)	If a first task can be done in n ₁ ways and a second task in n ₂ ways, and if these tasks cannot be done at the same time then there are ways to do either task.
		(v)	Let G be a directed graph and v be a vertex of G. The number of edges
			ending at v is called .
	4		
	(c)	Ansv	er the following questions: (5M)
		(i)	Why is f, defined by $f(x) = 1/(1-x)$, not a function from R to R?
	1	(ii)	Find the Fibonacci numbers f ₂ and f ₃ .
	11	(iii)	State the essential difference between permutations and combinations, with

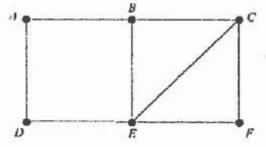
- (iv) State Product rule in counting of objects.
- (v) What does it mean for a string to be derivable from a string ω by phase structure grammar G?

2. Answer any three of the following:

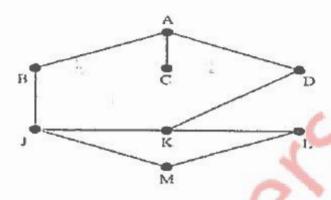
(15 M)

- (a) Let $S = \{-1, 0, 2, 4, 7\}$. Find f(S) if (i) f(x) = 1, (ii) f(x) = 2x + 1.
- (b) Define one-to-one function. Determine whether each of the following functions from {a, b, c, d} to itself is one-to-one.
 i) f(a) = b, f(b) = a, f(c) = c, f(d) = d
 ii) f(a) = b, f(b) = b, f(c) = d, f(d) = c
- (c) Let R be the relation on the set of real numbers such that aRb if and only if a b is an integer. Is R an equivalence relation? Justify your answer.
- (d) Define a poset. Is (S,R) a poset if S is the set of all people in the world and (a, b) ∈ R, where a and b are people, if
 i) a is no shorter than b?
 - ii) a weighs more than b?
- (e) Solve the recurrence relation $a_n = 4a_{n-1} 4a_{n-2}$ for $n \ge 2$, $a_0 = 6$, $a_1 = 8$.
- (f) Describe Tower of Hanoi puzzle. Formulate a recurrence relation for it.

3. Answer any three of the following:

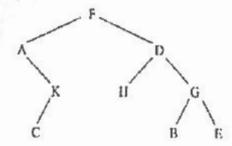

(15 M)

- (a) How many ways in which 5 men and 5 women stand in a row so that no two men and no two women are adjacent to each other?
- (b) State and prove Pascal identity.
- (c) State Pigeonhole principle. A chess player has 77 days to prepare for a serious tournament. He decides to practice by playing at least one game per day and a total of 132 games. Show that there is a succession of days during which he must have played exactly 21 games.
- (d) How many integers between 1 and 600 (both inclusive) are not divisible by 3, 5 or 7?
- (e) Define a language L over an alphabet A. Let A= {a, b, c}. Find L* where language L= {a, b, c}
- (f) Let $A = \{a, b\}$. Construct an automaton M which will accept precisely those words from A which ends in two b's.

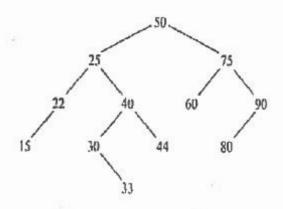

4. Answer any three of the following:

(15 M)

(a) Consider the graph G in the following figure. Find: (i) all cycles which include vertex A, (ii) all cycles in G.


(b) Consider the graph G in the following figure (where the vertices are ordered alphabetically). (i) Find the adjacency structure of G. (ii) Find the order in which the vertices of G are processed using a Breadth-first search algorithm beginning at vertex A.

- (c) Suppose a graph G contains two distinct paths from a vertex u to a vertex v. Show that G has a cycle.
- (d) Draw the graph G corresponding to each adjacency matrix:


$$\begin{bmatrix} 1 & 1 & 1 & 2 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 2 \\ 2 & 0 & 2 & 2 \end{bmatrix}$$

- (e) Consider the binary tree T in the following figure.
 - (i) Traverse T using the inorder algorithm.
 - (ii) Traverse T using the postorder algorithm.

(f) Let T be the binary search tree in the following figure. Suppose nodes 22, 25, 75 are deleted one after the other from T. Find the final tree T.

Q.P. Code: 781301

5. Answer any three of the following:

(15 M)

- (a) Draw the Hasse diagram for divisibility on the set {1, 2, 4, 8, 16, 32, 64}.
- (b) How many solutions does the equation x+y+z=11 have, where x, y and z are nonnegative integers with $x \ge 3$, $y \ge 1$ and $z \ge 0$?
- (c) Find all solutions of the recurrence relation a_n = 2a_{n-1} + 3ⁿ.
 (d) What is the coefficient of x¹²y¹³ in the expansion (x+y)²⁵ using binomial theorem.
- Draw all possible non similar binary trees T with three nodes.