Marks: 60

F.E. SEM - II CBSGS / MAY 2017

Q. P. Code: 11965

Time: 2 Hours

- 1) Question No.1 is compulsory.
 - 2) Attempt any three questions from Q. No. 2 to 6.
 - 3) Figures to the right indicate full marks.

1

Q.1 Attempt any FIVE.

N.B.

- a) Why does an excessively thin film appear to be perfectly dark when illuminated?
- b) A grating has 620 rulings /mm & is 5.05 mm wide. What is the smallest wavelength interval that can be resolved in the third order at $\lambda = 481$ nm?
- c) Why would you recommend use of optical fibre in communication system?
- d) An electron is bound in a one dimensional potential well of width 2 A° but of infinite height. Find its energy values in the ground state and first excited state?
- e) Explain the measurement of frequency of AC signal using Cathode Ray Oscilloscope?
- f) Distinguish between spontaneous emission & stimulated emission?
- g) Define superconductivity, critical temperature & critical magnetic field.
- Q.2 a) How is Newton's ring experiment used to determine wavelength of a monochromatic source of light? In Newton's rings experiment the diameter of nth & (n+8)th bright rings are 4.2 mm & 7 mm respectively. Radius of curvature of the lower surface of lens is 2m. Determine the wavelength of light?
 - b) An optical fibre has core diameter of 6 μ m and its core refractive index 1.45. The critical angle is 87°. Calculate I) refractive index of cladding ii) acceptance angle Iii) the number of modes propagating through fibre when wavelength of light is 1 μ m.
- Q.3 a) With neat energy level diagram explain principle, construction & working of 8

 He-Ne laser?

Q. P. Code: 11965

b)	Derive condition for maxima & minima of the light reflected from a thin transparent film of	
	uniform thickness. A parallel beam of sodium light strikes a film of oil floating on water.	
	When viewed at an angle of 30° from normal, 9th dark band is seen. Determine the thickness	1
	of the film. Refractive index of oil is 1.46, λ =5890 A° .	7
a)	Explain experimental method to determine the wavelength of spectral line using diffraction grating?	5
b)	Show that an electron cannot pre-exist in free state in a nucleus.	5
c)	Distinguish between type I & type II superconductor?	5
a)	A diffraction grating used at normal incidence gives a yellow line ($\lambda = 6000 \text{A}^{\circ}$) in	
	a certain spectral order superimposed on a blue line(λ = 4800 A) of next higher order	
	if the angle of diffraction is sin ⁻¹ (3/4), calculate the grating element?	5
b)	Derive one dimensional time dependent Schrodinger's equation for matter waves?	5
c)	With neat diagram explain construction & working of Scanning Electron Microscope.	5
a)	Find the de Broglie wavelength & velocity of an α particle of energy 1 keV. Given Mass of α	
	particle = 6.68×10^{-27} kg.	5
b)	Derive Bethe's law for electron refraction?	5
c)	What are Carbon Nano tubes? Explain properties of Nano tubes?	5
	a) b) c) a) b)	 uniform thickness. A parallel beam of sodium light strikes a film of oil floating on water. When viewed at an angle of 30° from normal, 9th dark band is seen. Determine the thickness of the film. Refractive index of oil is 1.46, λ=5890 A°. a) Explain experimental method to determine the wavelength of spectral line using diffraction grating? b) Show that an electron cannot pre-exist in free state in a nucleus. c) Distinguish between type I & type II superconductor? a) A diffraction grating used at normal incidence gives a yellow line (λ = 6000 A°) in a certain spectral order superimposed on a blue line(λ = 4800 A°) of next higher order if the angle of diffraction is sin⁻¹(3/4), calculate the grating element? b) Derive one dimensional time dependent Schrodinger's equation for matter waves? c) With neat diagram explain construction & working of Scanning Electron Microscope. a) Find the de Broglie wavelength & velocity of an α particle of energy 1 keV. Given Mass of α particle = 6.68 x 10⁻²⁷ kg. b) Derive Bethe's law for electron refraction?