28/11/2014

(REVISED COURSE)

QP Code:11873

(2 Hours)

[Total Marks: 60

N.B.: (1) Question No.1 is Compulsory.

- (2) Attempt any three Questions from remaining five questions.
- (3) All questions carry equal marks.
- (4) Figures to the right indicate full marks.
- (4) Atomic Weights: H = 1, C = 12, N = 14, O = 16, S = 32, Cl = 35.5, Ba = 137.3.
- 1. Answer any five of the following:-
 - (a) Distinguish between Galvanizing and tinning.

15

- (b) Give composition, properties and uses of Duralumin.
- (c) What is 'cracking' of heavy oil? Mention any four advantages of catalytic cracking over thermal cracking.
- (d) Explain 'Design for Energy Efficiency' principle in Green Chemistry.
- (e) What are composite materials? Mention any four characteristic properties of composite materials.
- (f) Gold and platinum do not get corroded in atmospheric oxygen. Explain.
- (g) A sample of coal has the following composition by mass: C = 75%, H = 7%, O = 8%, S = 4%, N = 2% and Ash = 4%. Calculate Gross Calorific value of the fuel using Dulong's formula.
- 2. (a) What is Electrochemical corrosion? With a suitable diagram and electrode reactions, explain electrochemical mechanism of rusting of iron in neutral, aqueous medium.
 - (b) What is meant by 'Knocking' in internal combustion engine? Define Octane number and Cetane number. Name any two anti-knock agents.

5

(c) Calculate percentage atom economy for the following reaction with respect to allyl chloride.

4

CH₃ - CH = CH₂ + Cl₂
$$\rightarrow$$
 Cl - CH₂ - CH = CH₂ + HCl allyl chloride

3. (a) A gaseous fuel has the following composition by volume: $H_2 = 40\%$, $CH_4 = 30\%$, CO = 10%, $C_3H_8 = 12\%$, $N_2 = 3\%$, $O_2 = 2\%$ and $CC_2 = 3\%$. Calculate volume and weight of air required for complete combustion of $1m^3$ of fuel. (Mol. wt. of air = 28.949)

2

	(b)	Explain conventional and green chemistry route of production of Indigo dye. Highlight the green chemistry principle involved.	5
	(c)	How do the following factors affect the rate of corrosion? (i) Relative areas of anodic and cathodic parts.	4
		(ii) Position of metal in galvanic series.	
4.	(a)	What are alloy steels? Explain special effects of the following metals on properties of alloy steels.	6
		(i) Chromium (ii) Nickel (iii) Cobalt (iv) Tungsten	
	(b)	Explain differential aeration corrosion with the help of a suitable example.	5
	(c)	Explain laminar composites with suitable example.	4
5.	(a)	What is biodiesel? Explain method to obtain biodiesel from vegetable oil. What are the advantages of biodiesel?	6
	(b)	What is Powder metallurgy? Explain Powder Injection moulding method of compaction.	5
	(c)	Define matrix phase of composite material. State functions of matrix phase.	4
6.	(a)	What is the principle of cathodic protection method of corrosion control? Explain Sacrificial anodic protection method.	5
	(b)	2.5 g. of a coal sample was analysed for nitrogen content by Kjeldahl's method. The liberated ammonia required 12.7ml of 0.5N H ₂ SO ₄ solution for neutralization. In a separate experiment, using Bomb calorimeter, 1.5 g of coal sample gave 0.28g of BaSO ₄ . Calculate percentage Nitrogen and Sulphur in the sample.	5
	(c)		5