2114113

FE-SEM-I (CBGS) DEC 2013

V-A4-II-Ex-13-F-11

A.M.I

Con. 7380-13.

GX-10003

(REVISED COURSE)

(3 Hours)

[Total Marks: 80

N.B.: (1) Question No. 1 is compulsory.

(2) Solve any three from the remaining.

1. (a) If
$$\alpha + i\beta = \tanh \left(\chi + i \frac{\pi}{4} \right)$$
, prove that $\alpha^2 + \beta^2 = 1$.

(b) If
$$u = x^2y + e^{xy^2}$$
 show that $\frac{\partial^2 u}{\partial x \partial y} = \frac{\partial^2 u}{\partial y \partial x}$.

(c) If
$$u = 1 - x$$
, $v = x(1 - y)$, $w = xy(1 - z)$ show that $\frac{\partial(u, v, w)}{\partial(x, y, z)} = x^2y$.

(e) Express the relation in
$$\alpha$$
, β , γ , δ for which $A = \begin{bmatrix} \alpha + i\gamma & -\beta + i\delta \\ \beta + i\delta & \alpha - i\gamma \end{bmatrix}$ is unitary.

(f) Find nth derivative of
$$2^x \cos^2 x \sin x$$
.
$$2 n \pi/3$$

2. (a)
$$Z^3 = (z+1)^3$$
, then show that $z = \frac{-1}{2} + \frac{i}{2} \cot \frac{\theta}{2}$ where $\theta = 20 \frac{\pi}{3}$.

(b) Find the non-singular matrices P and Q such that PAQ is in Normal Form. Also 6 fiind rank of A.

$$A = \begin{bmatrix} 4 & 3 & 1 & 6 \\ 2 & 4 & 2 & 2 \\ 12 & 14 & 5 & 16 \end{bmatrix}$$

(c) State and Prove Euler's theorem for homogeneous functions in two variables 8

and hence find the value of
$$x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} + x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$$
 for $u = e^{x+y} + \log(x^3 + y^3 - x^2y - xy^2)$

3. (a) For what values of λ the system of equations have λ non-trivial solution? Obtain 6 the solution for real values of λ where $3x+y-\lambda x=0$, 4x-2y-3z=0, $2\lambda x+4y-\lambda 2\neq 0$.

(b) Find the stationary values of sin x sin y sin(x + y).

(c) If cos(x + iy) cos(u + iv) = 1, where x, y, u, v are real, then show that $tanh^2y cosh^2v = sin^2u$. 8

Con. 7380-GX-10003-13.

2

4. (a) If
$$ux + vy = a$$
, $\frac{u}{x} + \frac{v}{y} = 1$, Show that $\frac{u}{x} \left(\frac{\partial x}{\partial u} \right)_v + \frac{v}{y} \left(\frac{\partial y}{\partial v} \right)_v = 0$.

- (b) If $(1 + i \tan \alpha)^{(1 + i \tan \beta)}$ is real then one of the principal values is $(\sec \alpha)^{\sec^2 \beta}$.
- (c) Solve by Crout's Method the system of equaitons 2x + 3y + z = -1, 5x + y + z = 89, 3x + 2y + 4z = 11 $b \cos 30$
- 5. (a) If $\sin^4\theta \cos^3\theta = a\cos\theta + \left(b\cos^3\theta\right) + \cos 5\theta + d\cos 7\theta$ then find a, b, c, d.
 - (b) Use Taylor theorem and arrange the equaiton in powers of x. $7 + (x + 2) + 3(x + 2)^3 + (x + 2)^4 (x + 2)^5$
 - (c) If $y = \cos(m \sin^{-1}x)$ prove that $(1 x^2) y_{n+2} (2n+1) xy_{n+1} + (m^2 n^2) y_n = 0$. 8
- 6. (a) Solve correctly upto three iterations the following equations by Gauss-Seidel method. 6 10x 5y 2z = 3, 4x 10y + 3z = -3, x + 6y + 10z = -3.
 - (b) If $u = \sin(x^2 + y^2)$ and $a^2x^2 + b^2y^2 = c^2 \text{find } \frac{du}{dx}$.
 - (c) Fit a curve $y = ax + bx^2$ for the data:

X		2	3	4	5	6
y	2.51	5.82	9.93	14.84	20.55	27.06

_____V____