(Time: 3 hours) Total Marks: 80

(3)

- N.B. (1) Question no. 1 is Compulsory
 - (2) Solve any three from the remaining.

Q.1) a) Prove that
$$(1 + i\sqrt{3})^8 + (1 - i\sqrt{3})^8 = -2^8$$
 (3)

a) Prove that
$$(1 + t\sqrt{3})^{-1} + (1 - t\sqrt{3})^{-1} = -2^{3}$$

b) If $A = \frac{1}{3} \begin{pmatrix} 1 & 2 & a \\ 2 & 1 & b \\ 2 & -2 & c \end{pmatrix}$ is orthogonal find a,b,c. (3)

c)
$$z^3 + xy - y^2z = 6$$
 find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ where z is an implicit function of x and y.

d) If
$$u = e^x \cos y$$
, $v = e^x \sin y$ find $\frac{\partial(u,v)}{\partial(x,y)}$. (3)

e) Find the
$$n^{th}$$
 derivative of $y = \frac{x^2 + 4x + 1}{x^3 + 2x^2 - x - 2}$ (4)

f) Find a,b if
$$\lim_{x \to 0} \frac{a \sinh x + b \sinh x}{x^3} = \frac{5}{3}$$
 by L'Hospitals Rule. (4)

Q.2) a) Find the roots common to
$$x^4 + 1 = 0$$
 and $x^6 - i = 0$ (6)

b) If $y = \sin^{-1}x$ Prove That

$$(1 - x^2)y_{n+2} - (2n+1)xy_{n+1} - n^2y_n = 0 \text{ also find } y_9(0)$$
 (6)

c) Discuss the maxima and minima of

$$f(x,y) = x^3 + 3xy^2 - 15x^2 - 15y^2 + 72x \tag{8}$$

Hence find maximum and minimum value of f(x, y).

Q.3) a) Find the values of k for which the equations
$$x + y + z = 1, x + 2y + 3z = k, x + 5y + 9z = k^2$$
 have a solution, solve them for these values of k. (6)

b) If
$$x = \sqrt{vw}$$
, $y = \sqrt{wu}$, $z = \sqrt{uv}$, Prove that
$$x \frac{\partial \phi}{\partial x} + y \frac{\partial \phi}{\partial y} + z \frac{\partial \phi}{\partial z} = u \frac{\partial \phi}{\partial u} + v \frac{\partial \phi}{\partial v} + w \frac{\partial \phi}{\partial w}$$
 (6)

where \emptyset is the function of x,y,z.

c) If
$$tan(\alpha + i\beta) = cos\theta + isin\theta$$
 Prove that
$$\alpha = \left(\frac{n\pi}{2} + \frac{\pi}{4}\right) & \beta = \frac{1}{2} logtan\left(\frac{\pi}{4} + \frac{\theta}{2}\right).$$
 (8)

Q.4) a) If
$$z = e^{x/y} + log(x^3 + y^3 - x^2y - xy^2)$$
, Find the value of
$$x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} + x^2 \frac{\partial^2 z}{\partial x^2} + 2xy \frac{\partial^2 z}{\partial x \partial y} + y^2 \frac{\partial^2 z}{\partial y^2}.$$
 (6)

b) Using encoding matrix
$$\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$
 encode and decode the message (6) NOW*STUDY

C) Solve the following equations by Gauss Jacobi's Iteration method
$$15x + 2y + z = 18,2x + 20y - 3z = 19,3x - 6y + 25z = 22$$
 (8)

- Q.5) a) Prove that the general value of $(1 + itan\alpha)^{-i}$ is (6) $e^{2m\pi+\alpha}[cos(logcos\alpha)+isin(logcos\alpha)]$
 - (6)
 - b) State and Prove Eulers Theorem for function of Three Variables. c) Expand $x^5 x^4 + x^3 x^2 + x 1$ in powers of (x 1) and (8)hence find $f\left(\frac{11}{10}\right)$, f(0.99).
- Q.6) a) Prove that:

$$sinh^7x = \frac{1}{64}(sinh7x - 7sinh5x + 21sinh3x - 35sinhx)$$

b) Find nonsingular matrices P and Q such that PAQ is in Normal form.

- - also find Rank of A, where $A = \begin{bmatrix} 2 & 1 & 4 \\ 3 & 2 & 2 \\ 7 & 4 & 10 \\ 1 & 0 & 6 \end{bmatrix}$. (6)

(6)

c) Using Newton Raphson Method find an iterative formula for $\sqrt[5]{N}$ where N is positive number, Hence find $\sqrt[5]{35}$. (8)

