F.E. SEM I / CBSGS / MAY 2017

Q. P. Code: 13629

TOTAL MARKS: 80

TIME: 3hrs

3

2

NB

- 1) Question No. 1 is compulsory.
- 2) Answer any three questions out of remaining five questions.
- 3) Assumption made should be clearly stated.
- 4) Answer to questions should be grouped together and written together.
- Q1 a. Find current through 2 Ω resistor using star delta transformation

b. Find Thevenin's equivalent circuit across AB

- c. An alternating voltage is represented by $v = 141.4 \sin 377t$, find 3 frequency, time period and time at which voltage is 100 V for the first time
- d. Prove that for a pure capacitor average power drawn over one complete 3 cycle is zero
- e. Draw a three phase delta connected load connected across a three phase 2 supply, mark phase voltage, phase current, line voltage and line current
- f. Derive the induced emf equation of a single phase transformer.
- g. Draw the input and output voltage waveform of a half wave rectifier.
- Q2 a. Using Mesh analysis find current through 2 Ω resistor.

[TURN OVER

Q. P. Code: 13629

2

- b. A choke coli of 10 Ω resistance and 0.1 H inductance is connected in series with a capacitor of 200 μF across 230 V, 50 Hz supply. Calculate circuit impedance, current, power factor, power dissipated in the coil and voltage across coil.
- Draw phasor diagram of a single phase transformer connected to a resistive 6 load.
- Q3 a. Three identical impedance are connected in star to a three phase supply of 400 V. The line current is 30 A and the total power taken from the supply is 14 kW. Calculate resistance and reactance value of each impedance.
 - b. Open circuit and short circuit test on a 5 kVA, 200/400 V, 50 Hz single 6 phase transformer gave the following test results. Open circuit test(L.V side): 200 V, 1 A, 100 W Short circuit test(with primary short circuited): 15 V, 10 A, 85 W Find the equivalent circuit parameters and draw it referred to primary side.
 - c. Illustrate with the output characteristics, the active region, saturation region 4 and cut off region of a CE transistor configuration.
 - d. Compare the performance of capacitor filter with inductor filter 2
- Q4 a. Find current through 2 Ω using source transformation.

- b. Two wattmeter are connected to measure power in a three phase circuit. The reading of one wattmeter is 7 kW when the load power factor is unity. 4 If the power factor of the load is changed to 0.707 lagging without changing the total input power, calculate the reading of two wattmeters
- c. Find the expression for the sum of three voltages in instantaneous form 5 where

$$V_1 = 6 \sin(\omega t + 35^\circ)$$

 $V_2 = 5 \sin(\omega t - 150^\circ)$
 $V_3 = 6 \cos(\omega t + 40^\circ)$

d. With neat circuit diagram explain the working of a full wave bridge 4 rectifier. Draw output voltage and current waveform

[TURN OVER

Q. P. Code: 13629

3

Q5 a. Find the value of R_L for which maximum power get dissipated and also 8 calculate the maximum power

b. Find currents through each branch

- c. Develop complete equivalent circuit of a single phase transformer
 - 7
- Q6 a. Find current through 15 Ω resistor using superposition theorem.

- b. An R-L-C series circuit with a resistance of 10 Ω, inductance of 0.2 H and 7 a capacitance of 40 μF is supplied with a 100 V supply at variable frequency. Find the following with respect to series resonance circuit.
 - 1. The frequency at which resonance takes place
 - 2. Current at resonance
 - 3. Power and power factor
 - 4. Q-factor
- c. Derive power and power factor in a balanced three phase star connected 6 circuit under two watt meters measurement in terms of wattmeter reading. Draw relevant connections and phasor diagram.