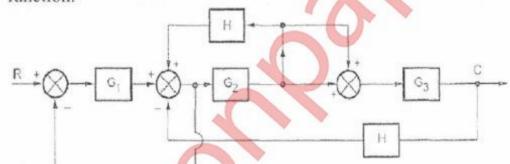
PROD/VIII/CBGS/ARCE | 18-05-2017 Automation & Control Engl Q.P. Code: 800001


Motal Marks: 80] (3 Hours)

- NB: Question No.1 is compulsory. 1)
 - Answer any 3 questions out of the remaining questions. 2)
 - 3) Assume suitable data if necessary.
- 1. Write Short notes on the following :-

20

10

- (a) Automation Principles and Strategies (b) Servo Hydraulics
- (c) Proximity Sensors
- (d) Open and Closed loop Control System
- Reduce the following block diagram and obtain the simplified transfer 10 2. function.

- (b) Draw a neat and labelled Ladder Diagram to program a PLC to execute the sequence A+, B+, A-, B-, continuously until a stop button is pressed; given that cylinder 'A' is controlled by a double solenoid valve and cylinder 'B' is controlled by a single solenoid valve. Also, show the allocation I assignment list.
- Using Routh's Criterion, examine the stability of a system with characteristic 3. 06 equation: $s^5 + 2s^4 + 3s^3 + 6s^2 + 2s + 1 = 0$
 - Draw the approximate root locus diagram for a closed loop system whose loop transfer function is given by the following and also comment on its stability

$$G(s)H(s) = \frac{K}{s(s+5)(s+10)}$$

Design and Draw a Pneumatic control circuit for the following sequence using 15 cascade method. C- (B+A-) / B- C+ / (A+C-) / dwell C+

(b) Explain in Brief, 'Dominant on' and 'Dominant off' latch.

05

- 5. (a) Design and Draw an Electro-pneumatic control circuit for the following sequence using double solenoid valves and groups.

 A+B+/(B-C+)/C-delay A-
 - (b) Determine the departure and arrival angles at complex poles and zeros for. $G(s)H(s) = \frac{K(s^2 + 3s + 10)}{s(s+2)(s^2 + 2s + 101)}$
- 6. (a) A unity feedback control system has

14

$$G(s) = \frac{10}{s(s+1)(s+5)}$$

Draw the Bode Plot. Determine G.M. P.M. ω_{gc} and ω_{pc} . Comment on the stability.

(b) For the inputs, a, b, c and output Y, the equation for an 'OR' logic operation is as below,

 $Y = \bar{a} \, \bar{b} \, \bar{c} \, V \, a \, \bar{b} \, \bar{c} \, V \, \bar{a} \, \bar{b} \, c \, V \, a \, \bar{b} \, c$

Using K. Map, simplify this equation and draw the circuit diagram.
