Q. P. Code: 27160

(3 Hours)

[Total Marks: 80]

N.B. (1) Question no.1 is compulsory

- (2) Answer any 3 questions out of the remaining questions.
- (3) Assume suitable data if necessary.
- Q.1. Write Short notes on the following: --
 - (a) Automation Principles and Strategies.
 - (b) Difference between Proportional and Servo Hydraulics.
 - (c) Proximity Sensors.
 - (d) Open and Closed loop Control System.
- Q.2. (a) State the rules used for Block diagram reduction. What are the advantages 10 and disadvantages of block diagram?
 - (b) Draw a neat and labelled Ladder Diagram to program a PLC to execute the sequence A+, B+, A-, B-, continuously until a stop button is pressed; given that cylinder 'A' is controlled by a double solenoid valve and cylinder 'B' is controlled by a single solenoid valve. Also, show the allocation / assignment list.
- Q.3. (a) Using Routh's Criterion, examine the stability of a system with characteristic 06 equation:
 - $s^5 + 2s^4 + 3s^3 + 6s^2 + 2s + 1 = 0$ (b) Draw the approximate root locus diagram for a closed loop system whose 14
 - loop transfer function is given by the following and also comment on its stability

$$G(s)H(s) = \frac{K}{s(s+5)(s+10)}$$

- Q.4. (a) Design and Draw a Pneumatic control circuit for the following sequence 15 using shift register method.
 - (A+B+) / delay B- C+ / (AC)- B+ / B-
- (b) Explain in Brief, 'Dominant on' and 'Dominant off' latch. 05
- Q.5. (a) Design and Draw an Electro-pneumatic control circuit for the following 14 sequence using double solenoid valves and groups.

 A+B+/(B-C+)/C-delay A-
 - (b) Determine the departure and arrival angles at complex poles and zeros for. 06

$$G(s)H(s) = \frac{K(s^2 + 3s + 10)}{s(s+2)(s^2 + 2s + 101)}$$

14

Q.6. (a) A unity feedback control system has

$$G(s) = \frac{10}{s(s+1)(s+5)}$$

Draw the Bode Plot. Determine G.M. P.M. ω_{gc} and ω_{pc} .Comment on the stability.

(b) For the inputs, a, b, c, d and output Y, the equation for an 'OR' logic operation of is as below,

 $Y = \overline{a} \ \overline{b} \ \overline{c} \ \overline{d} \ V \ a \ \overline{b} \ \overline{c} \ \overline{d} \ V \ \overline{a} \ \overline{b} \ c \ \overline{d} \ V \ a \ \overline{b} \ c \ \overline{d}$

Using K. Map, simplify this equation and draw the circuit diagram.
