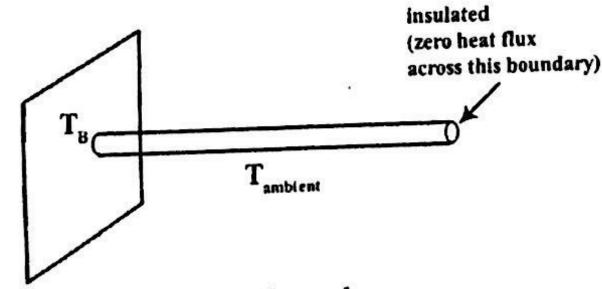
Q.P. Code: 793901
COMPUTATIONAL FLUID DYNAMICS.
(3 Hours)

[Total Marks: 80

2 1 DEC 2016


- 2) Attempt any three questions of the remaining five questions
- 3) Assume suitable data wherever necessary
- 4) Figures to the right indicate maximum marks

Answer any four Q.No.1

- What is CFD? Discuss its applications
- Write the Navier Stokes equations and discuss the various parameters in the equation b)
- Explain the initial and boundary conditions with examples
- Give an account of the errors in CFD
- What are the characteristics of turbulent flows?
- a) Discuss the significance of Reynolds Averaged Navier Stokes Equation for incompressible 06 flows
 - b) Explain the Mixing Length model used in Turbulence Modeling
 - 10 What is a SIMPLER algorithm used for? Explain the steps involved in the algorithm
- Figure shown is of a cylindrical fin with uniform cross sectional area A and length L = 1.5 m. Q.No.3 The base is at a temperature of 100 °C and the end is insulated. The fin is exposed to an ambient temperature of 20 °C. One dimensional heat transfer equation for the above phenomenon is

$$\frac{d}{dx}\left(k\,A\frac{dT}{dx}\right) - hP(T - T\infty) = 0$$

where h is the heat transfer coefficient, P is the perimeter, k is the thermal conductivity of the fin material and T_{∞} is the ambient temperature. Take $\frac{hP}{kA} = 30/m^2$

- Obtain the discretized equation for each node
- Arrange the equations in the matrix form and solve it to find the steady state temperature at five equally spaced nodes using TDMA

TURN OVER

20

04

Q.No.4 a) A property φ is transported by means of convection and diffusion through a one dimensional domain. The governing equation to be used is

$$\frac{d}{dx} (\rho u \phi) = \frac{d}{dx} (\Gamma \frac{d\phi}{dx}).$$

The boundary conditions to be used are at x = 0, $\phi_0 = 1$ and at x = L, $\phi_L = 0$. Assume that the property is transported from x = 0 to x = L. Using five equally spaced nodes and a Central Differencing scheme, calculate the distribution of ϕ as a function of x for u = 0.2 m/s, L = 2 m, $\rho = 1.1$ kg/m³, $\Gamma = 0.1$ kg/ms

- b) What is a grid? What are the parameters used to define grid quality
- Q.No.5 a) An insulated rod of cross-sectional area 20 x 10⁻³ m² is maintained at temperatures of 120⁰ C and 480⁰ C at its two ends. A uniform source of 1200 KW/ m³ is supplied to it. The thermal conductivity of the material of the rod is 1400 W/m/°C. The length of the rod is 300 mm. Assuming steady conditions and one dimensional heat conduction, calculate the temperature at 5 equally spaced nodes (other than the boundary nodes). Do a finite volume discretisation and perform the following steps
 - Write the governing equation
 - Discretize the equations
 - Write the equations in matrix form
 - Solve the matrix
 - b) What are the differences between FDM and FVM

Q.No.6 Answer the following

- a) Name the properties of discretization schemes and discuss them
- b) What are upwinding schemes? Explain the QUICK scheme
- c) What is a staggered grid? Where and why is it used?