## B.E. SEM VII / MECH / CBGS / CAD CAM CAE / MAY 2017

QP CODE: 793200

(3 Hours)

Max. Marks: 80

## Note:

- 1. Question 1 is Compulsory
- 2. Solve any three from remaining five
- 3. Figures to right indicate full marks
- 4. Assume suitable data if necessary



| uestion) |                                                                                                                                                | Marks |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Q.1      | a) Explain the convergence in FE analysis.                                                                                                     | 5     |
|          | b) Explain application of RP in MEMS.                                                                                                          | 5     |
|          | c) Explain the significance of Graphic Standards.                                                                                              | 5     |
|          | d) Briefly explain the advantages and disadvantages of NC machines.                                                                            | 5     |
| Q.2      | a) A triangle PQR with vertices P(2,5), Q(6,7) and R(2,7) is to be reflected                                                                   | 12    |
|          | about the line $y=0.5x+3$ . Determine the final transformation matrix and the coordinates of the reflected triangle.                           |       |
|          | b) How do you set work part zero, zero on a CNC machine?                                                                                       | 04    |
|          | c) What are the feedback devices used in NC/CNC machine?                                                                                       | 04    |
| Q.3      | a) Write a program in C++ using object oriented concept for 2D transformation which includes function for rotation.                            | 08    |
|          | b) What do you mean by complex engineering problem? With suitable example, explain the complexities involved and the tools chosen to solve it. | 08    |
|          | c) Enlist CIM hardware and software.                                                                                                           | 04    |
| Q.4      | a) What do you mean by Synthetic curves? What are the different types of synthetic curves and their continuity conditions?                     | 10    |
|          | b) Write a manual part program in G - M codes for generating a part as shown                                                                   | 10    |
|          | in Figure 1 (on next page). Size of raw material is \$85mm by 112mm. Explain                                                                   |       |
|          | each code. Assume suitable data if required. Use canned cycle code for                                                                         |       |
|          | Facing, Turning, and Taper Turning operations.                                                                                                 |       |
|          |                                                                                                                                                |       |

{TURN OVER



(Fig. 1 The component to be machined. All dimensions are in mm.)

Q.5 a) Explain the steps used in Rapid Prototyping process.

10

10

20

b) Write a complete APT part program to machine the outline of the geometry shown in fig.2 the top view up to a depth of 5 mm in one cut. The end mill used is 20 mm diameter. Assume suitable speed and feed for machining. Fig.2



- (Fig.2 The component to be machined.)
- Q.6 Write a note on the following (any four)

1 ....

- b) Major steps of FEM.
- c) Fused Deposition Modelling(FDM)
- d) Absolute versus incremental positioning in NC Machine tools.
- e) Affine Transformation and its properties.

a) Cohen-Sutherland Clipping Algorithm.

A6770F26CF24EE77E6B958C4E1BB03AA