Paper / Subject Code: 53105 / 5) Soft Computing

		(Time: 3 Hrs) Marks: 8	30
N.	B.:	1. Question no. 1 is compulsory .	200
		2. Solve any Three questions out of remaining Five questions.	30,00
Ou 1		Attempt any FOLID of the following	690
Qu-1	۵)	Attempt any FOUR of the following. How do genetic Algorithms differ from conventional optimization algorithms?	30 T 6
	a) b)	Demonstrate/Outline the excluded middle axioms, extended for fuzzy sets.	5
	c)	Demonstrate/outline the working of Roulette-wheel selection.	
	d)	Consider a fuzzy set and use Zadeh's notation to represent the same defined on universe	5 5 5
	u)	$X = \{a, b, c, d, e, f\}$. Then compute/Infer λ cut for: a $\lambda = 0.9$ b $\lambda = 0.3$	
	e)	A single-layer neural network has the weights $w = [0.2 \ 0.5 \ 0.66 \ 0.45]$ with bias b=0.3.	5
	- /	It is given an input of $I = [0.5 \ 0.8 \ 0.1 \ 0.36]$.	33.43
		Find/estimate the output if the sigmoidal activation function is used (slope = 0.3)	S. C. K.
			\$ V
Qu-2	a)	Determine the weights after one iteration for Hebbian learning of a single neuron	10
		network starting with initial weights $w = [1 - 1]$. The inputs are $X_1 = [1 - 2]$, $X_2 = [2 - 1]$	
		3], $X_3 = [1, -1]$ and learning rate $c=1$.	
		a) Use Bipolar Binary activation function.	
		b) Use Bipolar continuous activation function.	
	b)	What are Neuro-Fuzzy Systems? Explain the steps in Neuro-Fuzzy Hybrid System.	10
0 2	۵)	Haina Mamdani furry model degian a furry legis controller to detains in the week	10
Qu-3	a)	Using Mamdani fuzzy model design a fuzzy logic controller to determine the wash time of a domestic washing machine. Assume that the inputs are dirt and grease on	10
		cloths. Use three descriptors for each input variables and five descriptors for the output	
		variable. Derive a set of rules for control action and defuzzification. The design should	
		be supported by figures wherever possible. Show/Defend that if the clothes are soiled	
		to a larger degree the wash time will be more and vice-versa.	
	b)	Explain McCulloch Pitts neuron model with example.	10
Qu-4	a)	Describe Genetic Algorithms considering: Encoding, Selection, Crossover, Mutation,	10
		and Stopping Condition for Genetic Algorithms.	
	b)	Consider a suitable set of the binary input/output row matrix to train a hetero-associative	10
		network. Demonstrate the working of hetero-associative network and compute the final	
		weight matrix.	
o -			40
Qu-5		Explain the Backpropagation Algorithm with flowchart.	10
	b)	List the variety of Genetic algorithms and explain the Hybrid GA.	10
Qu-6		What is Linear Separability? Explain with example why single layer perceptron is not	10
2u-0		capable of solving Linearly Inseparable problems.	10
	b	Let R and S be two fuzzy relations defined as:	10
A 200	90	(5) 5	10
	46°	$\begin{pmatrix} y_1 & y_2 & y_3 \end{pmatrix}$	
	SON	$R = x1 \begin{bmatrix} 0.0 & 0.2 & 0.8 \\ 0.5 & 1.0 & 0.6 \end{bmatrix}$	
		$R = \begin{array}{cccc} x_1 & \begin{pmatrix} y_1 & y_2 & y_3 \\ 0.0 & 0.2 & 0.8 \\ 0.3 & 0.6 & 1.0 \end{pmatrix} & S = \begin{array}{cccc} y_1 & z_2 & z_3 \\ 0.3 & 0.7 & 1.0 \\ 0.5 & 1.0 & 0.6 \\ y_3 & 1.0 & 0.2 & 0.0 \end{array}$	
	700	\$5 F.O 0.2 0.0	
3,000		a) Compute/Infer the result of R°S using max-min composition.	
3,40,	200	b) Compute/Infer the result of R · S using max-product composition.	