## T5227 / T1320 2) IMAGE PROCESSING

## B.E. SEM VII / INST / CBSGS / MAY 2017 / 07.06.2017

G.C. A. \*

EXAM OF TARANTAL AND TARANTAL AND

QP Code: 812402

(3 Hours)

[ Total Marks: 80

- N. B.: (1) Question No. 1 is compulsory.
  - (2) Solve any three questions of the remaining questions.
  - (3) Assume any suitable data if required.
- 1. Attempt any four :-
  - (a) Explain the terms:
    - (i) Sampling
    - (ii) Quantization. What is the effect of smapling and quantization on the resolution of a digital image?
  - (b) What do you mean by unitary matrix and orthogonal matrix?
  - (c) What is histogram? State the difference between Histogram Equalisation and Histogram Matching.
  - (d) State the five basic formulations for region based segmentation.
  - (e) Differentiate between lossy and lossless compression.
- 2. (a) Explain following terms with example

10

- (i) Digital Negative
- (ii) Gray level slicing
- (iii) Log Transformation
- (iv) Bit Plane Slicing
- (b) Explain discrete cosine transform and compute DCT for the given image 10

|           |   |   | 4 |   |
|-----------|---|---|---|---|
| F(x, y) = | 2 | 1 | 2 | 1 |
|           | 1 | 2 | 3 | 2 |
|           | 2 | 3 | 4 | 3 |
|           | 1 | 2 | 3 | 2 |

- 3. (a) Apply following filters on the given image and show the intermediate results
  - (i) Low Pass Filter
  - (ii) High Pass Filter
  - (iii) Median Filter

- 4 3 7 1 6 3 1 4 6
- (b) Explain basic principles of detecting following in images
  - (i) Points
  - (ii) Lines
  - (iii) Edges. Generate 3 × 3 masks for each and explain operation

[ TURN OVER

10

QP Code: 812402 2 (a) Code the following data stream using Huffman coding 10  $\{1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,6,6,7\}$ (b) Explain following morphological operations (i) Dilation (ii) Erosion (iii) Opening (iv) Closing (a) Calculate the distance measures for the given image 10 3 p1 (i) Euclidean Distance (ii) City Block Distance 2 0 2 (iii) Chess Board Distance 3 3 1 (iv) m-adjacency Distance q0 (b) Explain the basic concept of Haar Transform and state applications 10 Write short notes on the following:-6. 20 (a) Homomorphic Filtering (b) Wiener Filter (c) High Boost Filter (d) Hougf Transform