B.E. SEM VII / INST / CBGS / MAY 2017

Q.P. Code: 798401

3 Hours

Total Marks:80

Instructions: -

- Question ONE is compulsory
- · Assume suitable data if necessary

Q1. Attempt any Four

(20)

- (a) Explain in detail Physical nonlinearity which has memory.
- (b) Draw sinusoidal response of saturation with dead zone nonlinearity and write the response equation.
- (c) Differentiate linear and nonlinear system in detail
- (d) Comment on stability using singular stability.

$$\ddot{y} - 8\dot{y} + 17\dot{y} = 34$$

- (e) Explain Lyapnov theorem in details.
- Q2. (a) Comment on Stability of the state space model given below using suitable Lyapunov function. (10)

$$X_1 = X_2$$

$$X_2 = -X_1 - X_2$$

(b) Investigate Stability using Describing function of following system which has unity relay signal

as a nonlinearity.

(10)

Q3. (a) Determine Stability using Kresovski method.

(10)

$$x_1 = -x_1 - x$$

$$x_{-} = -x_{2}$$

(b) Design IMC controller for plant model $G(s) = \frac{(-s+1)}{(2s+1)}$ in order to achieve the response with time

constant of 1.5 Sec.

(10)

Q 4. (a) Design the optimal controller via Riccati equation for system

(10)

$$x \neq \begin{bmatrix} 0 & 1 \\ 2 & -1 \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$$

To minimize the performance index $J = \int_{0}^{\infty} (x_1^2 + x_2^2 + u^2) dt$

(b) Draw Phase trajectory using delta method for given system.

(10)

$$x + 5x + 4x = 0$$

TURN OVER

Q.P. Code: 798401

- Q5. (a) Derive the describing function for relay with dead zone (10)
 - (b) For the system described by, investigate variant gradient method to find Lyapnov's function For non linear system,

$$x_1 = -2x_2$$

$$x_2 = -2x_1 + 2x_1x_2^2$$

- $x_2 = -2x_2 + 2x_1x_2^2 \label{eq:x2}$ (a) Explain Jump resonance for nonlinear system
- (b) How to comment on stability using singular point. (08)
- (06)(c) Explain in details about limit cycle.