sem-VII INST/ CBGS/ ACS

Advanced Control Systems

QP Code: 31337

(3 Hours)

[Total Marks: 80]

NB:

- 1. Q.1 is compulsory. Attempt any three from Q.2 to Q.6
- 2. Figures in right indicate full marks.
- 3. Assume suitable data if necessary.
 - Q.1 Attempt any four

- (a) What is the relative degree for the nonlinear system with respect to output?
- (b) Differentiate Linear and Nonlinear systems.
- (c) Draw block diagram for internal model control system and write the output equation for reference and disturbance inputs.
- (d) Explain Harmonic Linearization.
- (e) Explain Lyapunov stability analysis with neat sketches.
- (f) Explain jump resonance for a spring.
- Q.2 (A) Draw the phase trajectory for the following system using delta method. Assume initial condition $x = 1, \dot{x} = 0$.

$$\ddot{x} + 2\dot{x} + 4x = 0$$

(B) Consider the system given by

10

$$x_2' = -x_1 + x_1(1 - x_2^2 - x_1^2)x_2$$

$$\dot{x_1}=x_2$$
 . $\dot{x_2}=-x_1+x_1(1-x_2^2-x_1^2)x_2$ Find the equilibrium point and show that the unit circle is a limit cycle for the system.

Q.3 (A) Investigate stability of the system using Variable Gradient Method given by $x_1 = -x_1 + 2x_1^2 x_2$

$$=-x_1+2x_1^2x_1^2$$

$$x_2 = -x_2$$

(B) Derive the describing function for relay with hysteresis nonlinearity.

10

10

10

Q.4 (A) Design the optimal controller via Riccati equation for the system

$$\dot{x} = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$$

to minimize the performance index
$$J = \int_0^\infty (x_1^2 + x_2^2 + u^2) dt$$
.

(B) Explain feedback linearization for simple pendulum.

10

FW-Con. 11270-16.

Turn Over

- 5 (A) Design IMC controller for plant model. $\tilde{G}(s) = \frac{(-s+1)}{2s+1} \text{ in order to achieve the response with time constant of 1.2 sec.}$
 - (B) Investigate stability of the given system using describing function analysis.

- Q.6 Write short note on
 - (i) Singular Points
 - (ii) Perfect Control
 - (iii) Krasovskii Method

20

10

FW-Con. 11270-16.