Q.P.Code:13983

Max Marks: 80 Duration: 03 Hrs.

(10)

(10)

		1. Question I	No. 1 is compu	lsory.	10,20		
		2. Out of remaining questions, attempt any three questions.					
		3. Assume suitable additional data if required.					
		4. Figures in brackets on the right hand side indicate full marks.					
1.	(A)	Explain how MMICs are superior over HMICs.					
	(B)	Compare microwave amplifier versus microwave oscillators.					
	(C)	Explain Stability circles and its importance in amplifier design.					
	(D)	How coupled line parameters vary with frequency? (0					
2.	(A)	Describe key processing techniques used in making HMICs. (1					
	(B)	For two port oscillator at steady state oscillation, prove that if: (10					
	(100)	$\Gamma_L\Gamma_{in}=1$ then $\Gamma_T\Gamma_{out}=1$.					
3.	(A)	Discuss various mixers topology. Compare performance of them. (10					
	()	A BJT has the following S-parameters as a function of four frequencies.					
	(B)						
	(-)	of these, which has the greatest stability.					
		Device	Sn	S12	S21	S22	1
		\mathbf{A}	0.34∠ -170°	0.06 \(\times 70\)	4.3∠ 80°	0.45∠ -25°	
		B	0.75∠ -60°	0.2 × 70°	5.0∠ 90°	0.51 \(\text{ 60°}	
		C	0.65∠ -140°	0.04∠ 60°	2.4∠ 50°	0.70∠ -65°	
4.		A MESFET is biased for large signal Class A operation with the following small signal S-parameters at 5 GHz: $S_{11} = 0.55 \angle -150^{\circ}$, $S_{12} = 0.04 \angle 20^{\circ}$, $S_{21} = 3.5 \angle 170^{\circ}$, and $S_{22} = 0.45 \angle -30^{\circ}$. The large signal forward transmission coefficient S_{21} is measured to be					
50.50		$S_{21}=2.8 \angle 180^{\circ}$. Design a large-signal Class A amplifier with maximum transducer gain in a 50 Ω system. Assume ± 0.5 dB error in gain. What is the high-power amplifier gain?					
5.	(A)	Derive the dispersion relation for open microstrip line. (19					
	(B)	Give limitations and criteria for the choice of substrate material in (10 HMICS and MMICS.					
	200						

6. (A) Give design considerations of Coplanar wave guides.

(B) Explain green's function.