Q. P. Code: 50300

Time: 3 Hours

Max Marks: 80

(10)

(10)

- 1. Question No. 1 is compulsory.
- 2. Out of remaining questions, attempt any three questions.
- 3. Assume suitable additional data if required.
- 4. Figures in brackets on the right hand side indicate full marks.
- Q.1. (A) What is meant by RADAR range? (05)
 - (B) Discuss the characteristics of microwaves. (05)
 - (C) Given the circuit shown in Fig. 1(C), design a lumped element matching network at 60 MHz that would transform Load impedance $Z_L = 100$ j25 Ω into an input impedance of $Z = 25 + \text{j}15 \Omega$. Take $Z_0 = 50 \Omega$.

Matching network

L = ? $Z_{E} = 100 - j25 \Omega$ C = ?

Fig. 1(C)

- Q.2. (A) With a neat functional diagram explain the working principle of Cylindrical (10) Magnetron.
 - (B) Write a short note on circular waveguide. (10)
- Q.3. (A) Explain working of TRAPATT. (10)
 - (B) Radar operating at 1.5 GHz uses a peak pulse power of 2.5 MW and has a range of 100 nmi for objects whose radar cross section is 1 m². If the minimum receivable power of the receiver is 2×10^{-13} Watt, what is the smallest diameter of the antenna reflector could have assuming it to be a full paraboloid with n=0.65
- Q.4. (A) Explain any one bio-medical application using microwave. (10)
 - (B) Match a load impedance Z_L =60-j80 to a 50 Ω line using a double stub tuner. The stubs are open circuited and are spaced $\lambda/8$ apart. The match frequency is 2 GHz.
- Q.5. (A) With block diagram explain the MTI radar system. Give its limitations. (10)
 - (B) Explain Doppler Shift and its role in pulsed and CW RADAR. (10)
- Q.6. Write a short note on following: (05)
 - (A) Phase shifters (05)
 - (B) Reflex Klystron (05)
 - (05) Kellex Riystroll
 - (C) Gunn diode (05)
 - (D) Clutter
