Time: 3hrs

Max. Marks: 80

N.B:

- 1. Question No.1 is compulsory
- 2. Attempt any three out of remaining five questions
- 3. Assume any suitable data wherever required but justify the same
- 4. Illustrate answers with neat sketches wherever required

- Q.1 a) Define with diagram, perspective projection
- (05)

(05)

- b) What are the advantages and disadvantages of edge based (05) segmentation?
- c) What is the basic idea of Histogram modeling?
- d) Write video frame classification & various digital video formats. (05)
- Q. 2 a) State properties of Fourier Transform and prove convolution (10) property of Fourier transform.
 - b) Given orthogonal kernel matrix A and image U: (10)

$$A = 1/\sqrt{2} \quad \boxed{\begin{array}{c|c} 1 & 1 \\ \hline 1 & -1 \end{array}}$$

$$U = \begin{array}{c|c} 1 & 2 \\ \hline 3 & 4 \end{array}$$

Find transformed image and basis image

- Q. 3 a) Compare histogram equalization, histogram specification and contrast stretching with example.
 - b) For 3 bit, 4x4 image, perform image negative, Bit plane slicing, And low pass filtering (10)

0	7	3	1
3	6	4	6
2	4	2	2
1	2	5	3

- Q. 4 a) Explain split and merge segmentation technique (10)
 - b) Elaborate Hit or Miss transform with example

(10)

Q. 5	a)	Differentiate between image enhancement and restoration Explain application of Wiener filter	(10)
	b)	Which are different motion estimation techniques? Explain any one technique in detail.	(10)
Q. 6		Write short notes on any four.	(20)
	a)	Opening and Closing	
	b)	Homomorphic Filtering	
	c)	Inverse filter	
	d)	Image noise models	
	e)	Hierarchical block matching algorithm	