(05)

Robotics

QP CODE: 732400

(3 Hours)

[Total Marks: 80]

- N.B.: 1. Question No. 1 is compulsory.
 - 2. Attempt any three questions from the remaining five questions.
 - 3. Assume suitable data if necessary.
 - 4. Figures to the right indicate full marks.
- Q.1. Answer following questions in brief.
 - a Draw the approximate workspace for the following robot. Assume the (05) dimensions of the base and other parts of the structure of the robot are as shown below.

- b A point P(7,3,1)^T is attached to the frame F and is subjected to following (05) transformations. Find the coordinates of the point relative to reference frame at the conclusion of transformations.
 - i Rotation of 90° about the z-axis
 - ii Followed by a rotation of 90° about y-axis
 - iii Followed by a translation Of [4,-3,7]
- c What is potential function? How it is used for navigation of robot? (05)
- d What is thresholding? Explain with suitable example.
- Q.2. a A 3-DOF robot arm has been designed for applying paint on flat walls, as (15) shown below.

- Assign coordinate frame as necessary based on the D-H representation.
- Write parameter table.

TURN OVER

- Write all A matrices.
- Find the ^UT_H matrix.
- b Define the following terms (05)
 - Euler angles
 - Articulated joints
- Q.3. a Derive the equations of motion for the system shown below:

- b A camera is attached to the hand frame T_H of a robot as given. The corresponding inverse Jacobian of the robot at this location is also given. The robot makes a differential motion described as $D = [0.05 \ 0 \ -0.1 \ 0 \ 0.1 \ 0.03]^T$.
 - i Find which joints must make a differential motion, and by how much, in order to create the indicated differential motion
 - ii Find the change in the Hand frame
 - iii Find the new location of the camera after the differential motion
 - iv Find how much the differential motion should have been instead, if measured relative to Frame T_H, to move the robot to the same location as in part (iii)

$$T_{H} = \begin{bmatrix} 0 & 1 & 0 & 3 \\ 1 & 0 & 0 & 2 \\ 0 & 0 & -1 & 8 \end{bmatrix} \quad J^{-1} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 2 & 0 & -1 & 0 & 0 & 0 \\ 0 & -0.2 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

- Q.4. a Explain Tangent Bug algorithm and compare it with Bug2 algorithm. (10)
 - b Explain Brushfire algorithm. Discuss local minima problem. (10)
- Q.5. a What is GVO? Explain sensor-based construction of GVD. (10)
 - b Explain How you will generate Cartesian-space trajectories. Give simple (10) example.
- Q.6. Write short notes on
 - a Forward and Inverse kinematics (05)
 - Cangragian Mechanics (05)
 - Visibility graph construction (05)
 - d Wave-front planner (05)

----- XXX ----