Q.P. Code: 719702

(3 Hours)

Total Marks: 80

N.B.: (1) Question ONE is compulsory.

- (2) Solve any THREE out of remaining questions.
- (3) Draw neat and clean diagrams.
- (4) Assume suitable data if required.
- 1. (a) Will the following circuits work as current sources? Give the correct reason for your answer.

- (b) List down the performance parameters of VCO and explain trade off 5 between them.
- (c) Calculate the pole associated with the node X shown in the following figure. Assume $R_s = 1K\Omega$, $C_F = 0.1pF$ and A = 10.

- (d) Draw and explain the floor plan for a possible mixed signal chip. 5
- 2. (a) Show the op-amp based implementation of temperature independent 10 bandgap reference and various issues involved thereof.
 - (b) For common source stage with diode connected load, if the variation of $\eta = (g_{mb}/g_m)$ with the output voltage is neglected then prove that the gain is independent of bias currents and voltages.

2

(c) Assuming $\lambda = \gamma = 0$, calculate the small signal gain of the circuit shown: 5

- 3. (a) The following circuit shown in Figure uses a resistor rather than a current source to define a tail current of 1mA. Assume $(W/L)_{1,2} = 25/0.5$, $\mu_n C_{ox} = 50 \ \mu A/V^2$, $V_{TH} = 0.6 \ V$, $\lambda = \gamma = 0 \ \text{and} \ V_{DD} = 3 \ V_{AD} = 3 \$
 - (a) What is the required input CM for which Rss sustains 0.5V?
 - (b) Calculate R_D for a differential gain of §.

- (b) Explain the concept of switched capacitor circuit. Draw and explain discrete 10 time integrator along with the output waveform.
- 4. (a) With the use of small signal behaviour, prove that for differential pair 10 the magnitude of differential gain is equal to $g_m R_D$ regardless of how the inputs are applied.
 - (b) What is the need of compensating operational amplifiers? Explain the compensation of two stage operational amplifiers?
 - Derive an expression for the input referred noise voltage of common source stage.

Q.P. Code: 719702

3

5. (a) Design two stage Operational Transconductance Amplifier (OTA) similar 1 to that shown in the figure to meet the following specifications with a phase margin of 60°:

$$\begin{array}{lll} A_{V} > 5000 \text{ V/V} & V_{DD} = 2.5 \text{ V} & V_{SS} = -2.5 \text{ V} \\ \text{Gain Bandwidth (GB)} = 10 \text{MHz} & C_{L} = 10 \text{pF} \\ \text{Slew Rate (SR)} > 10 \text{ V/}\mu\text{s} & V_{out} \text{ range } = \pm 2.5 \text{ V} \\ \text{ICMR} = -1 \text{ to } 2 \text{ V} & P_{diss} \leq 2 \text{ mW} \end{array}$$

Use the following table for material and device parameters. Assume $C_{\rm ox} = 2.47 \ {\rm fF}/{\mu}{\rm m}^2$.

Parameter	n - channel	p - channel	Unit
$ m V_{TO}$	0.7 ± 0.15	-0.7 ± 0.15	V
K'	110	50	$\mu A/V^2$
λ	0.04	0.05	V^{-1}

Verify that the voltage gain and power dissipation given in the specifications are met by the designed circuit.

- (b) Explain charge-pump PLL.
- 6. (a) Compare the performance of various op-amp topologies. 5
 - (b) Explain the input-output characteristics of phase detector (PD) circuit.
 - (c) Explain the concept of clock feedthrough.
 - (d) Compare between full-custom and semi-custom design.