B. E Electronics VII CBS GS 21.12.16 QP Code: 728701 Elective I Digital Image Procenic

(3 Hours)

[Total Marks: 80

- N.B.: (1) Question No. 1 is compulsory.
 - (2) Attempt any three questions from remaining.
 - (3) All questions carry equal marks.
 - (4) Assume suitable data wherever necessary.
- 1. Answer any four of the following:
 - Justify the statement "Quality of picture depends on the no: of pixels 5 and the no: of gray levels representing the pictures".
 - 5 Explain RGB color model to represent a digital image. (b)
 - 5 Can two different images have the same histogram? Justify your (c) answer.
 - Define Chain codes in 4-connectivity and 8-connectivity. 5 (d)
 - 5 Compare arithmetic coding and Huffinan coding. (e)
- 10 2. (a) Apply the following Image Enhancement techniques for the given 3 bits per pixel image segment.

$$1 = \begin{bmatrix} 2 & 1 & 2 & 1 & 0 \\ 7 & 1 & 4 & 3 & 2 \\ 2 & 4 & 1 & 3 & 7 \\ 1 & 3 & 4 & 6 & 3 \\ 1 & 4 & 1 & 3 & 4 \end{bmatrix}$$

- (i) Digital Negative
- (ii) Bit plane Slicing
- (iii) Thresholding with T =5
- (b) Perform histogram equalization and plot the histograms before and after equalization.

Graylevel	0	1	2	3	4	5	6	7
No:of pixels	128	75	280	416	635	1058	820	684

10

B.E. Electronics VII CBSGS 21.12.16
Elective-I Digital Image
Processor

3. (a) Given the 7x7 Image segment, perform dilation using the structuring element shown:

AMAZZON JO J PORRODINA O ARTONIO PRI A CONTRA DE RESERVA E CONTRA	1
Structuring element:	0

0	0	0	0	0	0	0
0	1	0	1	0	1	0
0	1	0	1	0	1	0
0	1	0	1	0	1	0
0	1	1	1	1	1	0
0	0	0	1	0	0	0
0	0	0	1	0	0	0

- 10 (b) Explain image segmentation based on similarity with the help of examples.
- 4 (a) A source emits 6 symbols with the following probabilities. Construct the 10 Huffman code and calculate the average code word length and coding efficiency.

Symbol	А	В	Ç	D	E	F
Probability	0.2	0.3	0.06	0.15	0.04	0.25

(b) Explain with block diagram the transform based coding.

5. (a) Check whether the DFT matrix is unitary or not and calculate the 2D-DFT 10 of the given image segment using matrix multiplication method.

$$f(x,y) = \begin{bmatrix} 0 & 0 & 1 & 1 \\ 1 & 2 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 2 & 0 & 2 & 0 \end{bmatrix}$$

- (b) Explain various image enhancement techniques in frequency domain.
- 6. Write short notes on any three of the following :-

20

10

10

- (a) Hit or Miss Transformation
- Discrete Wavelet Transform
- Thresholding techniques
- Image file formats